跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/15 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘華森
研究生(外文):P. Venkatesan
論文名稱:設計與合成化學感測分子及其於細胞顯影之應用與 孔洞二氧化矽奈米粒子應用於氧化還原反應啟動釋放藥物的標靶藥物 傳輸之奈米載體
論文名稱(外文):Design and synthesis of chemosensors for applications in bio-imaging and redox stimuli-responsive nanocarriers based on MSNPs for targeted drug delivery in cancer therapy
指導教授:吳淑褓
指導教授(外文):Wu, Shu-Pao
口試日期:2017-01-17
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:105
語文別:英文
論文頁數:136
中文關鍵詞:化學感測分子Bodipy細胞顯影體內偵測藥物釋放
外文關鍵詞:ChemosensorBodipyBio-imagingIn vivoDrug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目標有二,第一是設計並合成出化學感測分子與其於細胞顯影之應用,第二是以孔洞二氧化矽奈米粒子 (MSNPs) 作為標靶藥物傳輸之奈米載體,針對氧化還原反應啟動釋放藥物之應用

第一章 探討化學感測分子的重要性以及螢光訊號傳遞之機制並解釋有機螢光感測分子對不同金屬離子、過氧化物和過氮化物之偵測
第二章 化合物 HCTe 利用次氯酸誘發碲化二苯之氧化反應而能快速偵測次氯酸分子,並伴隨強烈的螢光放射( = 0.75)。感測分子 HCTe 在與次氯酸分子反應後,會抑制碲化二苯對 BODIPY 之光誘導電子轉移效應 (Photoinduced Electron Transfer, PET) ,阻斷螢光淬熄的機制進而放出BODIPY 的螢光,並有82倍的螢光增強。化合物 HCTe 對於次氯酸分子有良好之線性關係 (1-10 M) ,且偵測極限可達到 41.3 nM (S/N = 3)。此外,在 RAW 264.7 cell 的螢光顯影實驗中,成功觀察到化合物 HCTe對次氯酸的偵測能力。
第三章 化合物 PHP 以 pyrene 為基底,在偵測到銅離子後藉由抑制 PET 效應的方式放出螢光。化合物 PHP 在與其他金屬離子反應後不產生螢光放射,顯示其對銅離子之高度選擇性,並能在 pH 5.0~10.0 範圍偵測銅離子。化合物 PHP 對銅離子之結合常數為 1.00 X 104 M-1。由 job plot 得知 PHP-Cu2+ 以1:1比例錯合。此外,錯合物 PHP-Cu2+ 與螯合劑EDTA之反應顯示其具有可逆性。其更可進一步應用於細胞實驗,在 RAW 264.7 cell 的螢光顯影實驗中,成功觀察到 PHP 對銅離子之偵測能力。
第四章 化合物 RhoSe 以 rhodamine-B 為基底,對汞離子具有絕佳的選擇性與靈敏度,並可快速偵測汞離子。由 job plot 得知 RhoSe-Hg2+ 以1:1比例錯合,並能在 pH 4.0~10.0 範圍偵測汞離子。此外,錯合物 RhoSe-Hg2+ 與 Na2S 之反應顯示其具有可逆性。化合物 RhoSe 可用於條帶法偵測銅離子,其更可進一步應用於細胞實驗,在共軛焦顯微鏡之螢光顯影實驗中,化合物 RhoSe 可於生物體內及體外偵測銅離子之存在。
第五章 化合物 RhoTe 是在發光團 rhodamine-B 上修飾 2-(phenyltellanyl) -benzaldehyde 基團,以此做為汞離子辨識端,當環境中存在汞離子時會觸發螺內酰胺開環反應與碲化物氧化反應,並放出螢光放射。化合物 RhoTe 對汞離子具有良好的選擇性,可於不同的金屬離子與過氧化物中專一的偵測汞離子。此外,在 HeLa cells 與斑馬魚的螢光顯影實驗中,成功觀察到 RhoTe 可於活體細胞及生物體內偵測汞離子之存在。據我們所知,這是第一個設計出以 rhodamine 為基底且用於偵測汞離子之“雙鎖”螢光化學感測分子。
第六章 孔洞二氧化矽奈米粒子 (MSNPs) 是作為標靶藥物傳輸之奈米載體,其可應用於癌症治療之藥物釋放。轉鐵蛋白以共價的方式鍵接在 MSNPs 的表面,利用雙硫鍵作為穀胱甘肽誘導細胞內藥物釋放之鍵橋。作為腫瘤標靶劑之轉鐵蛋白可增強腫瘤部位的藥物積累,以奈米閥的角色控製藥物釋放。我們分別利用BET / BJH 、 TEM 、 TGA 、 NMR 、和 FT-IR 確認其藥物釋放之應用。此外,我們也證實,一旦奈米粒子進入癌細胞後,癌細胞內生性之穀胱甘肽會使雙硫鍵斷鍵,打開奈米閥,使奈米載體釋放藥物。
The prime objective of this thesis is the design and synthesis of chemosensor probes for applications in bio-imaging and redox stimuli-responsive nanocarriers based on MSNPs for targeted drug delivery in cancer therapy.

Chapter 1 describes the significance of chemosensors and mechanism of signal transduction of several organic fluorescent probes for metal ions and ROS & RNS.

Chapter 2 discusses a fluorescent probe HCTe for rapid detection of hypochlorous acid based on the specific HOCl-promoted oxidation of diphenyl telluride. The reaction is accompanied by an 82-fold increase in the fluorescence quantum yield (from 0.009 to 0.75). The fluorescence turn-on mechanism is achieved by the suppression of photoinduced electron transfer (PET) from the diphenyl telluride group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCTe is linear in the HOCl concentration range of 1 to 10 μM with a detection limit of 41.3 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrated that HCTe could be an efficient fluorescent probe for HOCl detection in living cells.

Chapter 3 describes the pyrene-based fluorescent sensor for Cu(II) detection. It demonstrated high selectivity towards Cu2+ ions via PET based fluorescence enhancement. However, the metal ions Ag+, Ca2+, Co2+, Cr3+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced no changes in the fluorescence emission of the system. The binding constant (Ka) of Cu2+ binding to PHP was found to be 1.00 X 104 M-1. The 1: 1 binding ratio of PHP-Cu2+ complex was determined from the Job plot. The maximum fluorescence enhancement caused by Cu2+ was observed between the pH ranges 5.0–10. Additionally, the PHP-Cu2+ complex reversibility with addition of EDTA was observed. Confocal fluorescence microscopy imaging using RAW264.7 cells showed that PHP can be used as an effective fluorescent probe for detecting Cu2+ in living cells.

Chapter 4 describes the probe RhoSe for selective detection of mercury ions (Hg2+). RhoSe shows colorimetric and fluorescent turn-on responses towards Hg2+. The sensor probe RhoSe exhibited a fast response for Hg2+ with excellent sensitivity and the detection limits was found to be 12nM. The binding ratio of RhoSe-Hg2+ was determined by Job plots as a 1:1 ratio, and the effective pH range for Hg2+ detection was 4.0–10. Importantly, the reversibility of the RhoSe-Hg2+ complex was observed through the addition of Na2S. For practical applications, the strip method was utilized to detect Hg2+ in water. In addition, cell imaging experiments demonstrated that RhoSe is an effective fluorescent probe for Hg2+ detection in vitro and in vivo.

Chapter 5 reports, a rhodamine based fluorescent probe RhoTe for Hg2+ detection. The fluorescent probe RhoTe displayed a selective response to mercury ions over other metal ions and ROS. Additionally, experiments with confocal fluorescence microscopy imaging using Hela cells and zebrafish showed that RhoTe can be used as an effective fluorescent probe for detecting Hg2+ in living cells and organism. To the best our knowledge, we first designed an incorporating of ‘dual lock’ rhodamine based fluorescent probe RhoTe receptors provides an alternative route for Hg2+ sensing.

Chapter 6 discusses the mesoporous silica nanoparticle (MSNPs) for tumor-triggered targeting drug delivery to cancerous cells. Transferrin was covalently anchored on the surface of mesoporous silica nanoparticles via disulfide linking for glutathione-induced intracellular drug release. In this case, tumor-targeting agent enhances drug accumulation at the tumor site and transferrin functions as the gatekeeper to control the drug release. The successful functionalization of redox responsive MSNPs was confirmed by using BET / BJH, TEM, TGA, NMR and FT-IR respectively. More importantly, we demonstrated that the nanoparticles enter the cancer cell through the recognition of Tf receptor and the Tf gatekeeper is removed by the cleavage of the disulfide bond using an endogenous glutathione stimulus.
Abstract i
Acknowledgements v
Abbreviations vi
Table of Contents x
List of Figures xiv
List of Schemes xx
Supplementary Information xxi
Chapter 1 2
INTRODUCTION 2
1.1. Design of the fluorescent chemosensors 2
1.2 Mechanism of signal transduction 2
Chemosensors3 2
Chemodosimeter 4 3
1.3 Photoinduced electron transfer (PET) 3
References 4
Chpater 2 HOCl Chemosensor 7
Introduction 7
2.1 Literature reviews 8
2.2 HOCl turn-on fluorescent probe based on the oxidation of diphenyl telluride 10
2.3 Materials and methods 11
2.3.1 Materials and Instrumentation 11
2.3.2 Preparation of ROS and RNS 12
2.3.3 Synthesis of 2-(phenyltellanyl) benzaldehyde 12
2.3.4 Synthesis procedure of HCTe 13
2.3.5 The oxidized product (HCTeO) from the reaction of HCTe and NaOCl 13
2.3.6 Cell culture for RAW264.7 Macrophages 14
2.3.7 Cytotoxicity assay 14
2.3.8 Fluorescence imaging of Exogenous HCTe in Living Cells 14
2.3.9 Fluorescence Imaging of PMA-Induced HOCl Production in Living Cells 15
2.3.10 Quantum chemical calculation 15
2.4. Results and discussion 15
2.4.1 Synthesis of the probe HCTe 15
2.4.2 Fluorescent response of HCTe with HOCl 15
2.4.3 Bioimaging of HCTe 22
2.5. Conclusion 25
References 25
Chapter 3 Chemosensor of Cu2+ion 30
Introduction 30
3.1 Literature Reviews 30
3.2 A turn-on fluorescent pyrene-based chemosensor for Cu(II) with live cell application 32
3.3 Materials and methods 32
3.3.1 Materials and Instrumentation. 32
3.3.2 Synthesis of (Z)-2-(2-(pyren-1-ylmethylene) hydrazinyl) pyridine 33
3.3.3 Cation selection study by fluorescence spectroscopy 33
3.3.4 Determination of the binding stoichiometry and the stability constants Ka of Cu2+ binding in chemosensor PHP 33
3.3.5 The pH dependence on the reaction of Cu2+ with PHP by fluorescence spectroscopy 34
3.3.6 Cell culture for RAW264.7 Macrophages 34
3.3.7 Cytotoxicity assay 34
3.3.8 Fluorescence imaging of PHP 34
3.3.9 Computational methods 35
3.4 Results and discussion 35
3.4.1 Synthesis of PHP 35
3.4.2 Cation-sensing properties 36
3.4.3 Fluorescence quantum yield determination 43
3.4.4 Cell imaging of PHP 44
3.5 Conclusion 45
References 46
Chapter 4 Chemosensor for selective detection of Hg2+ 50
INTRODUCTION 50
4.1 Literature Reviews 50
4.2 EXPERIMENTAL SECTION 53
4.2.1 Instruments. 53
4.2.2 Synthesis of (RhoSe) 53
4.2.3 Binding stoichiometry and the association constant (Ka) of RhoSe with Hg2+ 53
4.2.4 Cytotoxicity assay 54
4.2.5 Fluorescence imaging of RhoSe 54
4.2.6 Hg2+ imaging in zebrafish 54
4.2.7 Computational methods 55
4.3 RESULTS AND DISCUSSION 55
4.3.1 Application of RhoSe in test strips 62
4.3.2 Bioimaging of RhoSe 63
4.3.3 Fluorescence imaging experiments of RhoSe in zebrafish 64
CONCLUSION 65
References 66
Chpater 5 A ‘dual lock’ fluorescent chemodosimeter for Hg(II) detection in Vitro and Vivo 71
Introduction 71
5.1 Literature Reviews 72
5.2 Experimental 73
5.2.1 Materials and Instrumentation. 73
5.2.2 Synthesis of (RhoTe) 74
5.2.3 Cation selection study by fluorescence spectroscopy. 74
5.2.4 Cell culture for HeLa cell line 74
5.2.5 Cytotoxicity assay 74
5.2.6 Fluorescence imaging of RhoTe 75
5.2.7 In Vivo Imaging of Zebrafish 75
5.3 Result and Discussion 76
5.3.1 Design of the fluorescent probe 76
5.3.2 Proposed mechanism 79
5.3.3 pH experiment 80
5.3.4 Bio imaging of RhoTe 82
5.3.5 Fluorescence imaging experiments of RhoTe in zebrafish 84
Conclusion 86
References 86
Chapter 6. MSNPs for targeted drug delivery in cancer therapy 90
Introduction 90
6.1 Mesoporous Silica Nanoparticles (MSNPs). 90
6.2 Biomedical Application of MSNPs 91
6.3 Literature Reviews 93
6.4 Redox stimuli-responsive nanocarriers based on Transferrin gate keeper MSNP for targeted delivery in cancer therapy 96
6.5 Experimental 97
6.5.1 Materials 97
6.5.2 Instruments 97
6.5.3 Synthesis of compounds 97
6.5.4 Drug delivery test 99
6.5.5 MTT cytotoxicity assay 100
6.5.6 Fluorescence microscopic images 100
6.5.7 Quantitative analysis by flow cytometry 100
6.6 Result and Discussion 101
6.6.1 Structural characterization 102
6.6.2 Drug loading and delivery studies 109
6.6.3 Cell viability evaluation 111
6.6.4 Flow cytometry studies 112
6.6.5 Confocal laser scanning microscopy imaging studies 113
Conclusion 115
References 116
Chapter 2 Supplementary Information 120
Chapter 3 Supplementary Information 127
Chapter 4 Supplementary Information 130
Chapter 5 Supplementary Information 133
1. Bargossi, C.; Fiorini, M. C.; Montalti, M.; Prodi, L.; Zaccheroni, N., Recent developments in transition metal ion detection by luminescent chemosensors. Coord. Chem. Rev., 2000, 208, 17-32.
2. Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev., 2015, 115, 7893-7943.
3. Lou, X.; Ou, D.; Li, Q.; Li, Z., An indirect approach for anion detection: the displacement strategy and its application. Chem. Commun., 2012, 48, 8462-8477.
4. Yang, Y.; Zhao, Q.; Feng, W.; Li, F., Luminescent Chemodosimeters for Bioimaging. Chem. Rev., 2013, 113, 192-270.
5. Boens, N.; Leen, V.; Dehaen, W., Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 2012, 41, 1130-1172.
6. Kaur, N.; Singh, N.; Cairns, D.; Callan, J. F., A Multifunctional Tripodal Fluorescent Probe: “Off−On” Detection of Sodium as well as Two-Input AND Molecular Logic Behavior. Org. Lett., 2009, 11, 2229-2232.
7. Lu, H.; Zhang, S.; Liu, H.; Wang, Y.; Shen, Z.; Liu, C.; You, X., Experimentation and Theoretic Calculation of a BODIPY Sensor Based on Photoinduced Electron Transfer for Ions Detection. J. Phys. Chem., 2009, 113, 14081-14086.
8. Culzoni, M. J.; Munoz de la Pena, A.; Machuca, A.; Goicoechea, H. C.; Babiano, R., Rhodamine and BODIPY chemodosimeters and chemosensors for the detection of Hg2+, based on fluorescence enhancement effects. Anal. Methods 2013, 5, 30-49.

chapter-2
1. Winterbourn, C. C.; Hampton, M. B.; Livesey, J. H.; Kettle, A. J., Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome: IMPLICATIONS FOR MICROBIAL KILLING. J. Biol. Chem., 2006, 281, 39860-39869.
2. Chen, X.; Tian, X.; Shin, I.; Yoon, J., Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. J. Chem. Soc. Rev., 2011, 40, 4783-4804.
3. Fiedler, T. J.; Davey, C. A.; Fenna, R. E., X-ray Crystal Structure and Characterization of Halide-binding Sites of Human Myeloperoxidase at 1.8 Å Resolution. J. Biol. Chem., 2000, 275, 11964-11971.
4. Yap, Y. W.; Whiteman, M.; Cheung, N. S., Chlorinative stress: An under appreciated mediator of neurodegeneration. Cell. Signal., 2007, 19, 219-228.
5. Zhang, J.; Veasey, S., Making Sense of Oxidative Stress in Obstructive Sleep Apnea: Mediator or Distracter, Front. Neurol., 2012, 3, 1-8.
6. Rudolph, V.; Andrie, R. P.; Rudolph, T. K.; Friedrichs, K.; Klinke, A.; Hirsch-Hoffmann, B.; Schwoerer, A. P.; Lau, D.; Fu, X.; Klingel, K.; Sydow, K.; Didie, M.; Seniuk, A.; von Leitner, E.-C.; Szoecs, K.; Schrickel, J. W.; Treede, H.; Wenzel, U.; Lewalter, T.; Nickenig, G.; Zimmermann, W.-H.; Meinertz, T.; Boger, R. H.; Reichenspurner, H.; Freeman, B. A.; Eschenhagen, T.; Ehmke, H.; Hazen, S. L.; Willems, S.; Baldus, S., Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med ., 2010, 16, 470-474.
7. Whiteman, M.; Rose, P.; Siau, J. L.; Cheung, N. S.; Tan, G. S.; Halliwell, B.; Armstrong, J. S., Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radic. Biol. Med., 2005, 38, 1571-1584.
8. Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D., A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid. Org. Lett., 2008, 10, 2171-2174.
9. Yang, Y.-K.; Cho, H. J.; Lee, J.; Shin, I.; Tae, J., A Rhodamine−Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings. Org. Lett., 2009, 11, 859-861.
10. Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T., Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. J. Am. Chem. Soc., 2011, 133, 5680-5682.
11. Cheng, X.; Jia, H.; Long, T.; Feng, J.; Qin, J.; Li, Z., A "turn-on" fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of C[double bond, length as m-dash]N isomerization. Chem. Commun., 2011, 47, 11978-11980.
12. Yuan, L.; Lin, W.; Song, J.; Yang, Y., Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem. Commun., 2011, 47, 12691-12693.
13. Zhou, Y.; Li, J.-Y.; Chu, K.-H.; Liu, K.; Yao, C.; Li, J.-Y., Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem. Commun., 2012, 48, 4677-4679.
14. Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K., A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem. Commun., 2013, 49, 1014-1016.
15. Liu, S.-R.; Wu, S.-P., Hypochlorous Acid Turn-on Fluorescent Probe Based on Oxidation of Diphenyl Selenide. Org. Lett., 2013, 15, 878-881.
16. Liu, S.-R.; Vedamalai, M.; Wu, S.-P., Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide. Anal. Chim. Acta., 2013, 800, 71-76.
17. Xu, Q.; Lee, K.-A.; Lee, S.; Lee, K. M.; Lee, W.-J.; Yoon, J., A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production. J. Am. Chem. Soc., 2013, 135, 9944-9949.
18. Emrullahoglu, M.; Ucuncu, M.; Karakus, E., A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem. Commun., 2013, 49, 7836-7838.
19. Cheng, G.; Fan, J.; Sun, W.; Cao, J.; Hu, C.; Peng, X., A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Chem. Commun., 2014, 50, 1018-1020.
20. Hu, J. J.; Wong, N.-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D., HKOCl-2 Series of Green BODIPY-Based Fluorescent Probes for Hypochlorous Acid Detection and Imaging in Live Cells. Org. Lett., 2014, 16, 3544-3547.
21. Yu, S.-Y.; Hsu, C.-Y.; Chen, W.-C.; Wei, L.-F.; Wu, S.-P., A hypochlorous acid turn-on fluorescent probe based on HOCl-promoted oxime oxidation and its application in cell imaging. Sens. Actuator B-Chem., 2014, 196, 203-207.
22. Li, J.; Huo, F.; Yin, C., A selective colorimetric and fluorescent probe for the detection of ClO- and its application in bioimaging. RSC Adv., 2014, 4, 44610-44613.
23. Liu, F.; Gao, Y.; Wang, J.; Sun, S., Reversible and selective luminescent determination of ClO-/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 2014, 139, 3324-3329.
24. Kim, J.; Kim, Y., A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl- in aqueous media. Analyst 2014, 139, 2986-2989.
25. Manjare, S. T.; Kim, J.; Lee, Y.; Churchill, D. G., Facile meso-BODIPY Annulation and Selective Sensing of Hypochlorite in Water. Org. Lett., 2014, 16, 520-523.
26. Ba, L. A.; Doring, M.; Jamier, V.; Jacob, C., Tellurium: an element with great biological potency and potential. Org. Biomol. Chem., 2010, 8, 4203-4216.
27. Yu, F.; Li, P.; Wang, B.; Han, K., Reversible Near-Infrared Fluorescent Probe Introducing Tellurium to Mimetic Glutathione Peroxidase for Monitoring the Redox Cycles between Peroxynitrite and Glutathione in Vivo. J. Am. Chem. Soc., 2013, 135, 7674-7680.
28. Li, X.; Zhang, G.; Ma, H.; Zhang, D.; Li, J.; Zhu, D., 4,5-Dimethylthio-4‘-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen. J. Am. Chem. Soc., 2004, 126, 11543-11548.
29. Reed, J. W.; Ho, H. H.; Jolly, W. L., Chemical synthesis with a quenched flow reactor. Hydroxytrihydroborate and peroxynitrite. J. Am. Chem. Soc., 1974, 96, 1248-1249.
30. Loudet, A.; Burgess, K., BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chem. Rev., 2007, 107, 4891-4932.
31. Wolfson, M.; McPhail, L. C.; Nasrallah, V. N.; Snyderman, R., Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme. J. Immunol., 1985, 135, 2057-62.
32. Yang, Y.-C.; Lu, H.-H.; Wang, W.-T.; Liau, I., Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads. Anal. Chem., 2011, 83, 8267-8272.

chapter-3
1. Kim, B.-E.; Nevitt, T.; Thiele, D. J., Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol., 2008, 4, 176-185.
2. Que, E. L.; Domaille, D. W.; Chang, C. J., Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging. Chem. Rev., 2008, 108, 1517-1549.
3. Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O., Oxidative Stress and Antioxidant Defense. World Allergy Organ. J., 2012, 5, 9-19.
4. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3, 205-214.
5. Gaetke, L. M.; Chow, C. K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147-163.
6. Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D., The Role of Copper in Neurodegenerative Disease. Neurobiol. Dis., 1999, 6, 221-230.
7. Zatta, P.; Frank, A., Copper deficiency and neurological disorders in man and animals. Brain Res. Rev., 2007, 54, 19-33.
8. Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G., Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev., 2006, 106, 1995-2044.
9. Løvstad, R. A., A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. Biometals, 2004, 17, 111-113.
10. Kaur, S.; Kumar, S., Photoactive chemosensors 3 : a unique case of fluorescence enhancement with Cu(ii). Chem. Commun., 2002, 23, 2840-2841.
11. Kumar, S.; Singh, P.; Kaur, S., A Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition: tuning of fluorescence quenching to enhancement through spatial placement of anthracene unit. Tetrahedron, 2007, 63, 11724-11732.
12. Pamuk Algi, M.; Oztas, Z.; Algi, F., Triple channel responsive Cu2+ probe. Chem. Commun., 2012, 48, 10219-10221.
13. Jo, J.; Lee, H. Y.; Liu, W.; Olasz, A.; Chen, C.-H.; Lee, D., Reactivity-Based Detection of Copper(II) Ion in Water: Oxidative Cyclization of Azoaromatics as Fluorescence Turn-On Signaling Mechanism. J. Am. Chem. Soc., 2012, 134, 16000-16007.
14. Li, K.; Li, N.; Chen, X.; Tong, A., A ratiometric fluorescent chemodosimeter for Cu(II) in water with high selectivity and sensitivity. Anal. Chim. Acta, 2012, 712, 115-119.
15. Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z., Design and Synthesis of a Ratiometric Fluorescent Chemosensor for Cu(II) with a Fluorophore Hybridization Approach. Org. Lett., 2012, 14, 4378-4381.
16. Fan, J.; Liu, X.; Hu, M.; Zhu, H.; Song, F.; Peng, X., Development of an oxidative dehydrogenation-based fluorescent probe for Cu2+ and its biological imaging in living cells. Anal. Chim. Acta, 2012, 735, 107-113.
17. Liu, J.-M.; Lin, L.-p.; Wang, X.-X.; Lin, S.-Q.; Cai, W.-L.; Zhang, L.-H.; Zheng, Z.-Y., Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst, 2012, 137, 2637-2642.
18. Chou, C.-Y.; Liu, S.-R.; Wu, S.-P., A highly selective turn-on fluorescent sensor for Cu(ii) based on an NSe2 chelating moiety and its application in living cell imaging. Analyst, 2013, 138, 3264-3270.
19. Yeh, J.-T.; Chen, W.-C.; Liu, S.-R.; Wu, S.-P., A coumarin-based sensitive and selective fluorescent sensor for copper(ii) ions. New J.Chem., 2014, 38, 4434-4439.
20. Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K., Hg2+-Selective OFF−ON and Cu2+-Selective ON−OFF Type Fluoroionophore Based upon Cyclam. Org. Lett., 2006, 8, 371-374.
21. Senthilvelan, A.; Ho, I. T.; Chang, K.-C.; Lee, G.-H.; Liu, Y.-H.; Chung, W.-S., Cooperative Recognition of a Copper Cation and Anion by a Calix[4]arene Substituted at the Lower Rim by a β-Amino-α,β-Unsaturated Ketone. Chem. Eur. J., 2009, 15, 6152-6160.
22. Jisha, V. S.; Thomas, A. J.; Ramaiah, D., Fluorescence Ratiometric Selective Recognition of Cu2+ Ions by Dansyl−Naphthalimide Dyads. J. Org. Chem., 2009, 74, 6667-6673.
23. Chemate, S.; Sekar, N., Highly sensitive and selective chemosensors for Cu2+ and Al3+ based on photoinduced electron transfer (PET) mechanism. RSC Adv., 2015, 5, 27282-27289.
24. Patil, S. R.; Nandre, J. P.; Patil, P. A.; Sahoo, S. K.; Devi, M.; Pradeep, C. P.; Fabiao, Y.; Chen, L.; Redshaw, C.; Patil, U. D., A uracil nitroso amine based colorimetric sensor for the detection of Cu2+ ions from aqueous environment and its practical applications. RSC Adv., 2015, 5, 21464-21470.
25. Li, G.; Tao, F.; Wang, H.; Wang, L.; Zhang, J.; Ge, P.; Liu, L.; Tong, Y.; Sun, S., A novel reversible colorimetric chemosensor for the detection of Cu2+ based on a water-soluble polymer containing rhodamine receptor pendants. RSC Adv., 2015, 5, 18983-18989.
26. Pathak, S.; Das, D.; Kundu, A.; Maity, S.; Guchhait, N.; Pramanik, A., Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence "Turn-off" sensing of Cu(ii) and Fe(iii) ions. RSC Adv., 2015, 5, 17308-17318.
27. Singh, G.; Singh, J.; Mangat, S. S.; Singh, J.; Rani, S., Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv., 2015, 5, 12644-12654.
28. Sarkar, D.; Pramanik, A. K.; Mondal, T. K., A novel coumarin based molecular switch for dual sensing of Zn(ii) and Cu(ii). RSC Adv., 2015, 5, 7647-7653.
29. Wenfeng, L.; Hengchang, M.; con, L.; Yuan, M.; Chunxuan, Q.; Zhonwei, Z.; Zengming, Y.; Haiying, C.; ziqiang, L., A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe3+ and Cu2+ ions in aqueous solution. RSC Adv., 2015, 5, 6869-6878.
30. Canturk, C.; Ucuncu, M.; Emrullahoglu, M., A BODIPY-based fluorescent probe for the differential recognition of Hg(ii) and Au(iii) ions. RSC Adv., 2015, 5, 30522-30525.
31. Benesi, H. A.; Hildebrand, J. H., A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc., 1949, 71, 2703-2707.
32. Yang, M.; Meng, W.; Liu, X.; Su, N.; Zhou, J.; Yang, B., A selective colorimetric and fluorescent chemosensor for Cu2+ in living cells. RSC Adv., 2014, 4, 22288-22293.
33. Wu, S.-P.; Huang, Z.-M.; Liu, S.-R.; Chung, P. K., A Pyrene-based Highly Selective Turn-on Fluorescent Sensor for Copper(II) Ion and its Application in Live Cell Imaging. J. Fluoresc., 2012, 22, 253-259.
34. Yang, L.; Song, Q.; Damit-Og, K.; Cao, H., Synthesis and spectral investigation of a Turn-On fluorescence sensor with high affinity to Cu2+. Sensor. Actuat. B-Chem., 2013, 176, 181-185.

chapter-4
1. Chen, G.; Guo, Z.; Zeng, G.; Tang, L., Fluorescent and colorimetric sensors for environmental mercury detection. Analyst, 2015, 140, 5400-5443.
2. Li, X.; Gao, X.; Shi, W.; Ma, H., Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev., 2014, 114, 590-659.
3. Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev., 2015, 115, 7893-7943.
4. Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J., Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev., 2012, 112, 1910-1956.
5. Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R., Marine Biogeochemical Cycling of Mercury. Chem. Rev., 2007, 107, 641-662.
6. Zhang, Z.; Wu, D.; Guo, X.; Qian, X.; Lu, Z.; Xu, Q.; Yang, Y.; Duan, L.; He, Y.; Feng, Z., Visible Study of Mercuric Ion and Its Conjugate in Living Cells of Mammals and Plants. Chem. Res. Toxicol., 2005, 18, 1814-1820.
7. Harada, M., Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol., 1995, 25, 1-24.
8. Mercury Update: Impact on Fish Advisories, EPA Fact Sheet (EPA- 823–S2−01-011), EPA, Office of Water, Washington, DC, 2001, 1-10.
9. Chai, X.; Chang, X.; Hu, Z.; He, Q.; Tu, Z.; Li, Z., Solid phase extraction of trace Hg(II) on silica gel modified with 2-(2-oxoethyl)hydrazine carbothioamide and determination by ICP-AES. Talanta 2010, 82, 1791-1796.
10. Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens, W.; Leermakers, M., Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta, 2010, 82, 1919-1923.
11. Moreno, F.; Garcia-Barrera, T.; Gomez-Ariza, J. L., Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst, 2010, 135, 2700-2705.
12. Atilgan, S.; Ozdemir, T.; Akkaya, E. U., Selective Hg(II) Sensing with Improved Stokes Shift by Coupling the Internal Charge Transfer Process to Excitation Energy Transfer. Org. Lett., 2010, 12, 4792-4795.
13. Du, J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S., A New Fluorescent Chemodosimeter for Hg2+: Selectivity, Sensitivity, and Resistance to Cys and GSH. Org. Lett., 2010, 12, 476-479.
14. Guo, Z.; Zhu, W.; Zhu, M.; Wu, X.; Tian, H., Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines. Chem. Eur. J., 2010, 16, 14424-14432.
15. Yu, H.; Xiao, Y.; Guo, H.; Qian, X., Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and BODIPY: Transformation of ‘Turn-On’ Sensors into Ratiometric Ones with Dual Emission. Chem. Eur. J., 2011, 17, 3179-3191.
16. Ahamed, B. N.; Ghosh, P., A chelation enhanced selective fluorescence sensing of Hg2+ by a simple quinoline substituted tripodal amide receptor. Dalton Trans., 2011, 40, 12540-12547.
17. Li, C.-Y.; Xu, F.; Li, Y.-F.; Zhou, K.; Zhou, Y., A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal. Chim. Acta, 2012, 717, 122-126.
18. Ma, X.; Wang, J.; Shan, Q.; Tan, Z.; Wei, G.; Wei, D.; Du, Y., A “Turn-on” Fluorescent Hg2+ Chemosensor Based on Ferrier Carbocyclization. Org. Lett., 2012, 14, 820-823.
19. Vedamalai, M.; Wu, S.-P., A BODIPY-based colorimetric and fluorometric chemosensor for Hg(ii) ions and its application to living cell imaging. Org. Biomol. Chem., 2012, 10, 5410-5416.
20. Hu, J.; Hu, Z.; Liu, S.; Zhang, Q.; Gao, H.-W.; Uvdal, K., A new ratiometric fluorescent chemodosimeter based on an ICT modulation for the detection of Hg2+. Sens. Actuator B-Chem., 2016, 230, 639-644.
21. Yu, Z.; Tian, Z.; Li, Z.; Luo, Z.; Li, Y.; Li, Y.; Ren, J., A new chromogenic and fluorogenic chemosensor for Hg(II) with high selectivity based on the Hg2+-promoted deprotection of thioacetals. Sens. Actuator B-Chem., 2016, 223, 172-177.
22. Hong, M.; Lu, X.; Chen, Y.; Xu, D., A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+ in water matrix and living cell. Sens. Actuator B-Chem., 2016, 232, 28-36.
23. Piyanuch, P.; Watpathomsub, S.; Lee, V. S.; Nienaber, H. A.; Wanichacheva, N., Highly sensitive and selective Hg2+-chemosensor based on dithia-cyclic fluorescein for optical and visual-eye detections in aqueous buffer solution. Sens. Actuator B-Chem., 2016, 224, 201-208.
24. Wang, M.; Liu, X.; Lu, H.; Wang, H.; Qin, Z., Highly Selective and Reversible Chemosensor for Pd2+ Detected by Fluorescence, Colorimetry, and Test Paper. ACS App. Mater. Interfaces, 2015, 7, 1284-1289.
25. Li, M.; Sun, Y.; Dong, L.; Feng, Q.-C.; Xu, H.; Zang, S.-Q.; Mak, T. C. W., Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS2 receptor. Sens. Actuator B-Chem., 2016, 226, 332-341.
26. Li, D.; Li, C.-Y.; Qi, H.-R.; Tan, K.-Y.; Li, Y.-F., Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells. Sens. Actuator B-Chem., 2016, 223, 705-712.
27. Wechakorn, K.; Suksen, K.; Piyachaturawat, P.; Kongsaeree, P., Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sens. Actuator B-Chem., 2016, 228, 270-277.
28. Wang, Y.; Chang, H.-Q.; Wu, W.-N.; Peng, W.-B.; Yan, Y.-F.; He, C.-M.; Chen, T.-T.; Zhao, X.-L.; Xu, Z.-Q., Rhodamine 6G hydrazone bearing pyrrole unit: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Sens. Actuator B-Chem., 2016, 228, 395-400.
29. Jeong, J. W.; Rao, B. A.; Lee, J.-Y.; Hwang, J.-Y.; Son, Y.-A., An ‘OFF–ON’ fluorescent chemosensor based on rhodamine 6G-2-chloronicotinaldehyde for the detection of Al3+ ions: Part II. Sens. Actuator B-Chem., 2016, 227, 227-241.
30. Zhang, B.; Diao, Q.; Ma, P.; Liu, X.; Song, D.; Wang, X., A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sens. Actuator B-Chem., 2016, 225, 579-585.
31. Dujols, V.; Ford, F.; Czarnik, A. W., A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc., 1997, 119, 7386-7387.
32. Liu, S.-R.; Wu, S.-P., Hypochlorous Acid Turn-on Fluorescent Probe Based on Oxidation of Diphenyl Selenide. Org.Lett., 2013, 15, 878-881.
33. Benesi, H. A.; Hildebrand, J. H., A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc., 1949, 71, 2703-2707.
34. McClure, D. S., Spin‐orbit interaction in aromatic molecules. J. Chem. Phys., 1952, 20, 682-686.

chapter-5
1. Domaille, D. W.; Que, E. L.; Chang, C. J., Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol., 2008, 4, 168-175.
2. Valeur, B.; Leray, I., Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205, 3-40.
3. Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S., Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord. Chem. Rev., 2012, 256, 1992-2028.
4. Harris, H. H.; Pickering, I. J.; George, G. N., The Chemical Form of Mercury in Fish. Science, 2003, 301, 1203-1203.
5. Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D., Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol., 2003, 18, 149-175.
6. Boening, D. W., Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 2000, 40, 1335-1351.
7. Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y., A pathological study of Minamata disease in Japan. Acta Neuropathol., 1962, 2, 40-57.
8. Harada, M., Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol., 1995, 25, 1-24.
9. Brümmer, O.; La Clair, J. J.; Janda, K. D., Practical screening of mercury contamination in fish tissue. Bioorg. Med. Chem., 2001, 9, 1067-1071.
10. Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angew. Chem., 2007, 46, 6658-6661.
11. Guo, Z.; Zhu, W.; Zhu, M.; Wu, X.; Tian, H., Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines. Chem. Eur. J., 2010, 16, 14424-14432.
12. Carvalho, C. M. L.; Chew, E.-H.; Hashemy, S. I.; Lu, J.; Holmgren, A., Inhibition of the Human Thioredoxin System: A MOLECULAR MECHANISM OF MERCURY TOXICITY. J. Biol. Chem., 2008, 283, 11913-11923.
13. Thirupathi, P.; Saritha, P.; Lee, K.-H., Ratiometric fluorescence chemosensor based on tyrosine derivatives for monitoring mercury ions in aqueous solutions. Org. Biomol. Chem., 2014, 12, 7100-7109.
14. Mercury Update: Impact on Fish Advisories; EPA Fact Sheet EPA- 823-F-01-001; Environmental Protection Agency, Office of Water:Washington, DC, 2001, 1-10.
15. Vedamalai, M.; Wu, S.-P., A BODIPY-based colorimetric and fluorometric chemosensor for Hg(ii) ions and its application to living cell imaging. Org. Biomol. Chem., 2012, 10, 5410-5416.
16. Yu, S.-Y.; Wu, S.-P., A highly selective turn-on fluorescence chemosensor for Hg(II) and its application in living cell imaging. Sens. Actuator B-Chem., 2014, 201, 25-30.
17. Liu, S.-R.; Wu, S.-P., New water-soluble highly selective fluorescent chemosensor for Fe (III) ions and its application to living cell imaging. Sens. Actuator B-Chem., 2012, 171–172, 1110-1116.
18. Hu, J.; Hu, Z.; Liu, S.; Zhang, Q.; Gao, H.-W.; Uvdal, K., A new ratiometric fluorescent chemodosimeter based on an ICT modulation for the detection of Hg2+. Sens. Actuator B-Chem., 2016, 230, 639-644.
19. Manna, A.; Sarkar, D.; Goswami, S.; Quah, C. K.; Fun, H.-K., Single excited state intramolecular proton transfer (ESIPT) chemodosimeter based on rhodol for both Hg2+ and OCl-: ratiometric detection with live-cell imaging. RSC Adv., 2016, 6, 57417-57423.
20. D. S. McClure, J. Chem. Phys., 1952, 20, 682-686.
21. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J., A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev., 2008, 37, 1465-1472.
22. Yang, Y.; Zhao, Q.; Feng, W.; Li, F., Luminescent Chemodosimeters for Bioimaging. Chem. Rev., 2013, 113, 192-270.
23. Qu, Z.; Li, P.; Zhang, X.; Han, K., A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells. J. Mater. Chem. B 2016, 4, 887-892.
24. Kao, S.-L.; Venkatesan, P.; Wu, S.-P., A highly selective fluorescent sensor for Hg(ii) based on an NTe2 chelating motif and its application to living cell imaging. New J. Chem., 2015, 39, 3551-3557.
25. Ba, L. A.; Doring, M.; Jamier, V.; Jacob, C., Tellurium: an element with great biological potency and potential. Org. Biomol. Chem., 2010, 8, 4203-4216.

chapter-6
1. Aznar, E.; Oroval, M.; Pascual, L.; Murguía, J. R.; Martínez-Máñez, R.; Sancenón, F., Gated Materials for On-Command Release of Guest Molecules. Chem. Rev., 2016, 116, 561-718.
2. Ramaswami, R.; Harding, V.; Newsom-Davis, T., Novel cancer therapies: treatments driven by tumour biology. Postgrad. Med. J., 2013, 89, 652-8.
3. Kipp, J. E., The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284, 109-22.
4. Gupta, S. C.; Sung, B.; Prasad, S.; Webb, L. J.; Aggarwal, B. B., Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci., 2013, 34, 508-17.
5. Brigger, I.; Dubernet, C.; Couvreur, P., Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54, 631-651.
6. Liu, J.; Stace-Naughton, A.; Jiang, X.; Brinker, C. J., Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. J. Am. Chem. Soc., 2009, 131, 1354-1355.
7. Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J., Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery. J. Am. Chem. Soc., 2009, 131, 7567-7569.
8. Yang, Y.; Achazi, K.; Jia, Y.; Wei, Q.; Haag, R.; Li, J., Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery. Langmuir, 2016, 32, 12453-12460.
9. Yuan, J.-J.; Schmid, A.; Armes, S. P.; Lewis, A. L., Facile Synthesis of Highly Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine)-Coated Gold Nanoparticles in Aqueous Solution. Langmuir, 2006, 22, 11022-11027.
10. Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X. J., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4, 6135-49.
11. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc., 2012, 134, 5722-5725.
12. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2007, 46, 7548-7558.
13. Wang, Y.; Price, A. D.; Caruso, F., Nanoporous colloids: building blocks for a new generation of structured materials. J. Mater. Chem., 2009, 19, 6451-6464.
14. Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I., Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41, 2590-605.
15. Wang, Y.; Wise, A. K.; Tan, J.; Maina, J. W.; Shepherd, R. K.; Caruso, F., Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small, 2014, 10, 4244-4248.
16. He, Q.; Shi, J., MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26, 391-411.
17. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J., Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Acc. Chem. Res., 2013, 46, 792-801.
18. Kresge, C.; Leonowicz, M.; Roth, W.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
19. Lu, J.; Liong, M.; Li, Z.; Zink, J. I.; Tamanoi, F., Biocompatibility, biodistribution, and drug‐delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6, 1794-1805.
20. Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T., Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Fun. Mat., 2008, 18, 3745-3758.
21. Burns, A.; Ow, H.; Wiesner, U., Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35, 1028-1042.
22. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Acc. Chem. Res., 2007, 40, 846-853.
23. Vallet-Regí, M.; Balas, F.; Arcos, D., Mesoporous Materials for Drug Delivery. Angew. Chem. Int. Ed., 2007, 46, 7548-7558.
24. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S. M.; Wiesner, U.; Bradbury, M. S., Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121, 2768-2780.
25. Lin, Y.-S.; Haynes, C. L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J. Am. Chem. Soc., 2010, 132, 4834-4842.
26. Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells. Small, 2009, 5, 57-62.
27. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153, 198.
28. Such, G. K.; Johnston, A. P. R.; Caruso, F., Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev., 2011, 40, 19-29.
29. Yan, Y.; Björnmalm, M.; Caruso, F., Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. Chem.Mat., 2014, 26, 452-460.
30. Chen, N.-T.; Cheng, S.-H.; Souris, J. S.; Chen, C.-T.; Mou, C.-Y.; Lo, L.-W., Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. J. Mat. Chem. B, 2013, 1, 3128-3135.
31. Daniels, T. R.; Delgado, T.; Helguera, G.; Penichet, M. L., The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immune., 2006, 121, 159-176.
32. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z., Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc., 2013, 135, 5068-5073.
33. Xie, M.; Shi, H.; Li, Z.; Shen, H.; Ma, K.; Li, B.; Shen, S.; Jin, Y., A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf., B 2013, 110, 138-147.
34. Balendiran, G. K.; Dabur, R.; Fraser, D., The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22, 343-352.
35. Bilalis, P.; Tziveleka, L.-A.; Varlas, S.; Iatrou, H., pH-Sensitive nanogates based on poly(l-histidine) for controlled drug release from mesoporous silica nanoparticles. Polym. Chem., 2016, 7, 1475-1485.
36. Gao, H.; Liu, X.; Tang, W.; Niu, D.; Zhou, B.; Zhang, H.; Liu, W.; Gu, B.; Zhou, X.; Zheng, Y.; Sun, Y.; Jia, X.; Zhou, L., 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale, 2016, 8, 19573-19580.
37. Tian, Y.; Guo, R.; Jiao, Y.; Sun, Y.; Shen, S.; Wang, Y.; Lu, D.; Jiang, X.; Yang, W., Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horiz., 2016, 1, 480-487.
38. Gayam, S. R.; Wu, S.-P., Redox responsive Pd(ii) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system. J. Mater. Chem. B 2014, 2, 7009-7016.
39. Choi, H. W.; Kim, J.; Kim, J.; Kim, Y.; Song, H. B.; Kim, J. H.; Kim, K.; Kim, W. J., Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery. ACS Nano, 2016, 10, 4199-4208.
40. Rwei, A. Y.; Wang, W.; Kohane, D. S., Photoresponsive nanoparticles for drug delivery. Nano today, 2015, 10 (4), 451-467.
41. Gayam, S. R.; Venkatesan, P.; Sung, Y.-M.; Sung, S.-Y.; Hu, S.-H.; Hsu, H.-Y.; Wu, S.-P., An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and vivo. Nanoscale, 2016, 8, 12307-12317.
42. Cheng, Y.-J.; Zeng, X.; Cheng, D.-B.; Xu, X.-D.; Zhang, X.-Z.; Zhuo, R.-X.; He, F., Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf., B 2016, 145, 217-225.
43. Li, H.; Qian, Z. M., Transferrin/transferrin receptor‐mediated drug delivery. Med. Res. Rev., 2002, 22, 225-250.
44. Verma, A.; Simard, J. M.; Worrall, J. W. E.; Rotello, V. M., Tunable Reactivation of Nanoparticle-Inhibited β-Galactosidase by Glutathione at Intracellular Concentrations. J. Am. Chem. Soc., 2004, 126, 13987-13991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊