|
1. Bargossi, C.; Fiorini, M. C.; Montalti, M.; Prodi, L.; Zaccheroni, N., Recent developments in transition metal ion detection by luminescent chemosensors. Coord. Chem. Rev., 2000, 208, 17-32. 2. Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev., 2015, 115, 7893-7943. 3. Lou, X.; Ou, D.; Li, Q.; Li, Z., An indirect approach for anion detection: the displacement strategy and its application. Chem. Commun., 2012, 48, 8462-8477. 4. Yang, Y.; Zhao, Q.; Feng, W.; Li, F., Luminescent Chemodosimeters for Bioimaging. Chem. Rev., 2013, 113, 192-270. 5. Boens, N.; Leen, V.; Dehaen, W., Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 2012, 41, 1130-1172. 6. Kaur, N.; Singh, N.; Cairns, D.; Callan, J. F., A Multifunctional Tripodal Fluorescent Probe: “Off−On” Detection of Sodium as well as Two-Input AND Molecular Logic Behavior. Org. Lett., 2009, 11, 2229-2232. 7. Lu, H.; Zhang, S.; Liu, H.; Wang, Y.; Shen, Z.; Liu, C.; You, X., Experimentation and Theoretic Calculation of a BODIPY Sensor Based on Photoinduced Electron Transfer for Ions Detection. J. Phys. Chem., 2009, 113, 14081-14086. 8. Culzoni, M. J.; Munoz de la Pena, A.; Machuca, A.; Goicoechea, H. C.; Babiano, R., Rhodamine and BODIPY chemodosimeters and chemosensors for the detection of Hg2+, based on fluorescence enhancement effects. Anal. Methods 2013, 5, 30-49.
chapter-2 1. Winterbourn, C. C.; Hampton, M. B.; Livesey, J. H.; Kettle, A. J., Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome: IMPLICATIONS FOR MICROBIAL KILLING. J. Biol. Chem., 2006, 281, 39860-39869. 2. Chen, X.; Tian, X.; Shin, I.; Yoon, J., Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. J. Chem. Soc. Rev., 2011, 40, 4783-4804. 3. Fiedler, T. J.; Davey, C. A.; Fenna, R. E., X-ray Crystal Structure and Characterization of Halide-binding Sites of Human Myeloperoxidase at 1.8 Å Resolution. J. Biol. Chem., 2000, 275, 11964-11971. 4. Yap, Y. W.; Whiteman, M.; Cheung, N. S., Chlorinative stress: An under appreciated mediator of neurodegeneration. Cell. Signal., 2007, 19, 219-228. 5. Zhang, J.; Veasey, S., Making Sense of Oxidative Stress in Obstructive Sleep Apnea: Mediator or Distracter, Front. Neurol., 2012, 3, 1-8. 6. Rudolph, V.; Andrie, R. P.; Rudolph, T. K.; Friedrichs, K.; Klinke, A.; Hirsch-Hoffmann, B.; Schwoerer, A. P.; Lau, D.; Fu, X.; Klingel, K.; Sydow, K.; Didie, M.; Seniuk, A.; von Leitner, E.-C.; Szoecs, K.; Schrickel, J. W.; Treede, H.; Wenzel, U.; Lewalter, T.; Nickenig, G.; Zimmermann, W.-H.; Meinertz, T.; Boger, R. H.; Reichenspurner, H.; Freeman, B. A.; Eschenhagen, T.; Ehmke, H.; Hazen, S. L.; Willems, S.; Baldus, S., Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med ., 2010, 16, 470-474. 7. Whiteman, M.; Rose, P.; Siau, J. L.; Cheung, N. S.; Tan, G. S.; Halliwell, B.; Armstrong, J. S., Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radic. Biol. Med., 2005, 38, 1571-1584. 8. Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D., A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid. Org. Lett., 2008, 10, 2171-2174. 9. Yang, Y.-K.; Cho, H. J.; Lee, J.; Shin, I.; Tae, J., A Rhodamine−Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings. Org. Lett., 2009, 11, 859-861. 10. Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T., Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. J. Am. Chem. Soc., 2011, 133, 5680-5682. 11. Cheng, X.; Jia, H.; Long, T.; Feng, J.; Qin, J.; Li, Z., A "turn-on" fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of C[double bond, length as m-dash]N isomerization. Chem. Commun., 2011, 47, 11978-11980. 12. Yuan, L.; Lin, W.; Song, J.; Yang, Y., Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem. Commun., 2011, 47, 12691-12693. 13. Zhou, Y.; Li, J.-Y.; Chu, K.-H.; Liu, K.; Yao, C.; Li, J.-Y., Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem. Commun., 2012, 48, 4677-4679. 14. Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K., A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem. Commun., 2013, 49, 1014-1016. 15. Liu, S.-R.; Wu, S.-P., Hypochlorous Acid Turn-on Fluorescent Probe Based on Oxidation of Diphenyl Selenide. Org. Lett., 2013, 15, 878-881. 16. Liu, S.-R.; Vedamalai, M.; Wu, S.-P., Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide. Anal. Chim. Acta., 2013, 800, 71-76. 17. Xu, Q.; Lee, K.-A.; Lee, S.; Lee, K. M.; Lee, W.-J.; Yoon, J., A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production. J. Am. Chem. Soc., 2013, 135, 9944-9949. 18. Emrullahoglu, M.; Ucuncu, M.; Karakus, E., A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem. Commun., 2013, 49, 7836-7838. 19. Cheng, G.; Fan, J.; Sun, W.; Cao, J.; Hu, C.; Peng, X., A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Chem. Commun., 2014, 50, 1018-1020. 20. Hu, J. J.; Wong, N.-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D., HKOCl-2 Series of Green BODIPY-Based Fluorescent Probes for Hypochlorous Acid Detection and Imaging in Live Cells. Org. Lett., 2014, 16, 3544-3547. 21. Yu, S.-Y.; Hsu, C.-Y.; Chen, W.-C.; Wei, L.-F.; Wu, S.-P., A hypochlorous acid turn-on fluorescent probe based on HOCl-promoted oxime oxidation and its application in cell imaging. Sens. Actuator B-Chem., 2014, 196, 203-207. 22. Li, J.; Huo, F.; Yin, C., A selective colorimetric and fluorescent probe for the detection of ClO- and its application in bioimaging. RSC Adv., 2014, 4, 44610-44613. 23. Liu, F.; Gao, Y.; Wang, J.; Sun, S., Reversible and selective luminescent determination of ClO-/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 2014, 139, 3324-3329. 24. Kim, J.; Kim, Y., A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl- in aqueous media. Analyst 2014, 139, 2986-2989. 25. Manjare, S. T.; Kim, J.; Lee, Y.; Churchill, D. G., Facile meso-BODIPY Annulation and Selective Sensing of Hypochlorite in Water. Org. Lett., 2014, 16, 520-523. 26. Ba, L. A.; Doring, M.; Jamier, V.; Jacob, C., Tellurium: an element with great biological potency and potential. Org. Biomol. Chem., 2010, 8, 4203-4216. 27. Yu, F.; Li, P.; Wang, B.; Han, K., Reversible Near-Infrared Fluorescent Probe Introducing Tellurium to Mimetic Glutathione Peroxidase for Monitoring the Redox Cycles between Peroxynitrite and Glutathione in Vivo. J. Am. Chem. Soc., 2013, 135, 7674-7680. 28. Li, X.; Zhang, G.; Ma, H.; Zhang, D.; Li, J.; Zhu, D., 4,5-Dimethylthio-4‘-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen. J. Am. Chem. Soc., 2004, 126, 11543-11548. 29. Reed, J. W.; Ho, H. H.; Jolly, W. L., Chemical synthesis with a quenched flow reactor. Hydroxytrihydroborate and peroxynitrite. J. Am. Chem. Soc., 1974, 96, 1248-1249. 30. Loudet, A.; Burgess, K., BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev., 2007, 107, 4891-4932. 31. Wolfson, M.; McPhail, L. C.; Nasrallah, V. N.; Snyderman, R., Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme. J. Immunol., 1985, 135, 2057-62. 32. Yang, Y.-C.; Lu, H.-H.; Wang, W.-T.; Liau, I., Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads. Anal. Chem., 2011, 83, 8267-8272.
chapter-3 1. Kim, B.-E.; Nevitt, T.; Thiele, D. J., Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol., 2008, 4, 176-185. 2. Que, E. L.; Domaille, D. W.; Chang, C. J., Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging. Chem. Rev., 2008, 108, 1517-1549. 3. Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O., Oxidative Stress and Antioxidant Defense. World Allergy Organ. J., 2012, 5, 9-19. 4. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3, 205-214. 5. Gaetke, L. M.; Chow, C. K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147-163. 6. Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D., The Role of Copper in Neurodegenerative Disease. Neurobiol. Dis., 1999, 6, 221-230. 7. Zatta, P.; Frank, A., Copper deficiency and neurological disorders in man and animals. Brain Res. Rev., 2007, 54, 19-33. 8. Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G., Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev., 2006, 106, 1995-2044. 9. Løvstad, R. A., A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. Biometals, 2004, 17, 111-113. 10. Kaur, S.; Kumar, S., Photoactive chemosensors 3 : a unique case of fluorescence enhancement with Cu(ii). Chem. Commun., 2002, 23, 2840-2841. 11. Kumar, S.; Singh, P.; Kaur, S., A Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition: tuning of fluorescence quenching to enhancement through spatial placement of anthracene unit. Tetrahedron, 2007, 63, 11724-11732. 12. Pamuk Algi, M.; Oztas, Z.; Algi, F., Triple channel responsive Cu2+ probe. Chem. Commun., 2012, 48, 10219-10221. 13. Jo, J.; Lee, H. Y.; Liu, W.; Olasz, A.; Chen, C.-H.; Lee, D., Reactivity-Based Detection of Copper(II) Ion in Water: Oxidative Cyclization of Azoaromatics as Fluorescence Turn-On Signaling Mechanism. J. Am. Chem. Soc., 2012, 134, 16000-16007. 14. Li, K.; Li, N.; Chen, X.; Tong, A., A ratiometric fluorescent chemodosimeter for Cu(II) in water with high selectivity and sensitivity. Anal. Chim. Acta, 2012, 712, 115-119. 15. Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z., Design and Synthesis of a Ratiometric Fluorescent Chemosensor for Cu(II) with a Fluorophore Hybridization Approach. Org. Lett., 2012, 14, 4378-4381. 16. Fan, J.; Liu, X.; Hu, M.; Zhu, H.; Song, F.; Peng, X., Development of an oxidative dehydrogenation-based fluorescent probe for Cu2+ and its biological imaging in living cells. Anal. Chim. Acta, 2012, 735, 107-113. 17. Liu, J.-M.; Lin, L.-p.; Wang, X.-X.; Lin, S.-Q.; Cai, W.-L.; Zhang, L.-H.; Zheng, Z.-Y., Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst, 2012, 137, 2637-2642. 18. Chou, C.-Y.; Liu, S.-R.; Wu, S.-P., A highly selective turn-on fluorescent sensor for Cu(ii) based on an NSe2 chelating moiety and its application in living cell imaging. Analyst, 2013, 138, 3264-3270. 19. Yeh, J.-T.; Chen, W.-C.; Liu, S.-R.; Wu, S.-P., A coumarin-based sensitive and selective fluorescent sensor for copper(ii) ions. New J.Chem., 2014, 38, 4434-4439. 20. Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K., Hg2+-Selective OFF−ON and Cu2+-Selective ON−OFF Type Fluoroionophore Based upon Cyclam. Org. Lett., 2006, 8, 371-374. 21. Senthilvelan, A.; Ho, I. T.; Chang, K.-C.; Lee, G.-H.; Liu, Y.-H.; Chung, W.-S., Cooperative Recognition of a Copper Cation and Anion by a Calix[4]arene Substituted at the Lower Rim by a β-Amino-α,β-Unsaturated Ketone. Chem. Eur. J., 2009, 15, 6152-6160. 22. Jisha, V. S.; Thomas, A. J.; Ramaiah, D., Fluorescence Ratiometric Selective Recognition of Cu2+ Ions by Dansyl−Naphthalimide Dyads. J. Org. Chem., 2009, 74, 6667-6673. 23. Chemate, S.; Sekar, N., Highly sensitive and selective chemosensors for Cu2+ and Al3+ based on photoinduced electron transfer (PET) mechanism. RSC Adv., 2015, 5, 27282-27289. 24. Patil, S. R.; Nandre, J. P.; Patil, P. A.; Sahoo, S. K.; Devi, M.; Pradeep, C. P.; Fabiao, Y.; Chen, L.; Redshaw, C.; Patil, U. D., A uracil nitroso amine based colorimetric sensor for the detection of Cu2+ ions from aqueous environment and its practical applications. RSC Adv., 2015, 5, 21464-21470. 25. Li, G.; Tao, F.; Wang, H.; Wang, L.; Zhang, J.; Ge, P.; Liu, L.; Tong, Y.; Sun, S., A novel reversible colorimetric chemosensor for the detection of Cu2+ based on a water-soluble polymer containing rhodamine receptor pendants. RSC Adv., 2015, 5, 18983-18989. 26. Pathak, S.; Das, D.; Kundu, A.; Maity, S.; Guchhait, N.; Pramanik, A., Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence "Turn-off" sensing of Cu(ii) and Fe(iii) ions. RSC Adv., 2015, 5, 17308-17318. 27. Singh, G.; Singh, J.; Mangat, S. S.; Singh, J.; Rani, S., Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv., 2015, 5, 12644-12654. 28. Sarkar, D.; Pramanik, A. K.; Mondal, T. K., A novel coumarin based molecular switch for dual sensing of Zn(ii) and Cu(ii). RSC Adv., 2015, 5, 7647-7653. 29. Wenfeng, L.; Hengchang, M.; con, L.; Yuan, M.; Chunxuan, Q.; Zhonwei, Z.; Zengming, Y.; Haiying, C.; ziqiang, L., A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe3+ and Cu2+ ions in aqueous solution. RSC Adv., 2015, 5, 6869-6878. 30. Canturk, C.; Ucuncu, M.; Emrullahoglu, M., A BODIPY-based fluorescent probe for the differential recognition of Hg(ii) and Au(iii) ions. RSC Adv., 2015, 5, 30522-30525. 31. Benesi, H. A.; Hildebrand, J. H., A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc., 1949, 71, 2703-2707. 32. Yang, M.; Meng, W.; Liu, X.; Su, N.; Zhou, J.; Yang, B., A selective colorimetric and fluorescent chemosensor for Cu2+ in living cells. RSC Adv., 2014, 4, 22288-22293. 33. Wu, S.-P.; Huang, Z.-M.; Liu, S.-R.; Chung, P. K., A Pyrene-based Highly Selective Turn-on Fluorescent Sensor for Copper(II) Ion and its Application in Live Cell Imaging. J. Fluoresc., 2012, 22, 253-259. 34. Yang, L.; Song, Q.; Damit-Og, K.; Cao, H., Synthesis and spectral investigation of a Turn-On fluorescence sensor with high affinity to Cu2+. Sensor. Actuat. B-Chem., 2013, 176, 181-185.
chapter-4 1. Chen, G.; Guo, Z.; Zeng, G.; Tang, L., Fluorescent and colorimetric sensors for environmental mercury detection. Analyst, 2015, 140, 5400-5443. 2. Li, X.; Gao, X.; Shi, W.; Ma, H., Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev., 2014, 114, 590-659. 3. Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev., 2015, 115, 7893-7943. 4. Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J., Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev., 2012, 112, 1910-1956. 5. Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R., Marine Biogeochemical Cycling of Mercury. Chem. Rev., 2007, 107, 641-662. 6. Zhang, Z.; Wu, D.; Guo, X.; Qian, X.; Lu, Z.; Xu, Q.; Yang, Y.; Duan, L.; He, Y.; Feng, Z., Visible Study of Mercuric Ion and Its Conjugate in Living Cells of Mammals and Plants. Chem. Res. Toxicol., 2005, 18, 1814-1820. 7. Harada, M., Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol., 1995, 25, 1-24. 8. Mercury Update: Impact on Fish Advisories, EPA Fact Sheet (EPA- 823–S2−01-011), EPA, Office of Water, Washington, DC, 2001, 1-10. 9. Chai, X.; Chang, X.; Hu, Z.; He, Q.; Tu, Z.; Li, Z., Solid phase extraction of trace Hg(II) on silica gel modified with 2-(2-oxoethyl)hydrazine carbothioamide and determination by ICP-AES. Talanta 2010, 82, 1791-1796. 10. Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens, W.; Leermakers, M., Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta, 2010, 82, 1919-1923. 11. Moreno, F.; Garcia-Barrera, T.; Gomez-Ariza, J. L., Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst, 2010, 135, 2700-2705. 12. Atilgan, S.; Ozdemir, T.; Akkaya, E. U., Selective Hg(II) Sensing with Improved Stokes Shift by Coupling the Internal Charge Transfer Process to Excitation Energy Transfer. Org. Lett., 2010, 12, 4792-4795. 13. Du, J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S., A New Fluorescent Chemodosimeter for Hg2+: Selectivity, Sensitivity, and Resistance to Cys and GSH. Org. Lett., 2010, 12, 476-479. 14. Guo, Z.; Zhu, W.; Zhu, M.; Wu, X.; Tian, H., Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines. Chem. Eur. J., 2010, 16, 14424-14432. 15. Yu, H.; Xiao, Y.; Guo, H.; Qian, X., Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and BODIPY: Transformation of ‘Turn-On’ Sensors into Ratiometric Ones with Dual Emission. Chem. Eur. J., 2011, 17, 3179-3191. 16. Ahamed, B. N.; Ghosh, P., A chelation enhanced selective fluorescence sensing of Hg2+ by a simple quinoline substituted tripodal amide receptor. Dalton Trans., 2011, 40, 12540-12547. 17. Li, C.-Y.; Xu, F.; Li, Y.-F.; Zhou, K.; Zhou, Y., A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal. Chim. Acta, 2012, 717, 122-126. 18. Ma, X.; Wang, J.; Shan, Q.; Tan, Z.; Wei, G.; Wei, D.; Du, Y., A “Turn-on” Fluorescent Hg2+ Chemosensor Based on Ferrier Carbocyclization. Org. Lett., 2012, 14, 820-823. 19. Vedamalai, M.; Wu, S.-P., A BODIPY-based colorimetric and fluorometric chemosensor for Hg(ii) ions and its application to living cell imaging. Org. Biomol. Chem., 2012, 10, 5410-5416. 20. Hu, J.; Hu, Z.; Liu, S.; Zhang, Q.; Gao, H.-W.; Uvdal, K., A new ratiometric fluorescent chemodosimeter based on an ICT modulation for the detection of Hg2+. Sens. Actuator B-Chem., 2016, 230, 639-644. 21. Yu, Z.; Tian, Z.; Li, Z.; Luo, Z.; Li, Y.; Li, Y.; Ren, J., A new chromogenic and fluorogenic chemosensor for Hg(II) with high selectivity based on the Hg2+-promoted deprotection of thioacetals. Sens. Actuator B-Chem., 2016, 223, 172-177. 22. Hong, M.; Lu, X.; Chen, Y.; Xu, D., A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+ in water matrix and living cell. Sens. Actuator B-Chem., 2016, 232, 28-36. 23. Piyanuch, P.; Watpathomsub, S.; Lee, V. S.; Nienaber, H. A.; Wanichacheva, N., Highly sensitive and selective Hg2+-chemosensor based on dithia-cyclic fluorescein for optical and visual-eye detections in aqueous buffer solution. Sens. Actuator B-Chem., 2016, 224, 201-208. 24. Wang, M.; Liu, X.; Lu, H.; Wang, H.; Qin, Z., Highly Selective and Reversible Chemosensor for Pd2+ Detected by Fluorescence, Colorimetry, and Test Paper. ACS App. Mater. Interfaces, 2015, 7, 1284-1289. 25. Li, M.; Sun, Y.; Dong, L.; Feng, Q.-C.; Xu, H.; Zang, S.-Q.; Mak, T. C. W., Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS2 receptor. Sens. Actuator B-Chem., 2016, 226, 332-341. 26. Li, D.; Li, C.-Y.; Qi, H.-R.; Tan, K.-Y.; Li, Y.-F., Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells. Sens. Actuator B-Chem., 2016, 223, 705-712. 27. Wechakorn, K.; Suksen, K.; Piyachaturawat, P.; Kongsaeree, P., Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sens. Actuator B-Chem., 2016, 228, 270-277. 28. Wang, Y.; Chang, H.-Q.; Wu, W.-N.; Peng, W.-B.; Yan, Y.-F.; He, C.-M.; Chen, T.-T.; Zhao, X.-L.; Xu, Z.-Q., Rhodamine 6G hydrazone bearing pyrrole unit: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Sens. Actuator B-Chem., 2016, 228, 395-400. 29. Jeong, J. W.; Rao, B. A.; Lee, J.-Y.; Hwang, J.-Y.; Son, Y.-A., An ‘OFF–ON’ fluorescent chemosensor based on rhodamine 6G-2-chloronicotinaldehyde for the detection of Al3+ ions: Part II. Sens. Actuator B-Chem., 2016, 227, 227-241. 30. Zhang, B.; Diao, Q.; Ma, P.; Liu, X.; Song, D.; Wang, X., A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sens. Actuator B-Chem., 2016, 225, 579-585. 31. Dujols, V.; Ford, F.; Czarnik, A. W., A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc., 1997, 119, 7386-7387. 32. Liu, S.-R.; Wu, S.-P., Hypochlorous Acid Turn-on Fluorescent Probe Based on Oxidation of Diphenyl Selenide. Org.Lett., 2013, 15, 878-881. 33. Benesi, H. A.; Hildebrand, J. H., A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc., 1949, 71, 2703-2707. 34. McClure, D. S., Spin‐orbit interaction in aromatic molecules. J. Chem. Phys., 1952, 20, 682-686.
chapter-5 1. Domaille, D. W.; Que, E. L.; Chang, C. J., Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol., 2008, 4, 168-175. 2. Valeur, B.; Leray, I., Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205, 3-40. 3. Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S., Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord. Chem. Rev., 2012, 256, 1992-2028. 4. Harris, H. H.; Pickering, I. J.; George, G. N., The Chemical Form of Mercury in Fish. Science, 2003, 301, 1203-1203. 5. Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D., Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol., 2003, 18, 149-175. 6. Boening, D. W., Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 2000, 40, 1335-1351. 7. Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y., A pathological study of Minamata disease in Japan. Acta Neuropathol., 1962, 2, 40-57. 8. Harada, M., Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol., 1995, 25, 1-24. 9. Brümmer, O.; La Clair, J. J.; Janda, K. D., Practical screening of mercury contamination in fish tissue. Bioorg. Med. Chem., 2001, 9, 1067-1071. 10. Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angew. Chem., 2007, 46, 6658-6661. 11. Guo, Z.; Zhu, W.; Zhu, M.; Wu, X.; Tian, H., Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines. Chem. Eur. J., 2010, 16, 14424-14432. 12. Carvalho, C. M. L.; Chew, E.-H.; Hashemy, S. I.; Lu, J.; Holmgren, A., Inhibition of the Human Thioredoxin System: A MOLECULAR MECHANISM OF MERCURY TOXICITY. J. Biol. Chem., 2008, 283, 11913-11923. 13. Thirupathi, P.; Saritha, P.; Lee, K.-H., Ratiometric fluorescence chemosensor based on tyrosine derivatives for monitoring mercury ions in aqueous solutions. Org. Biomol. Chem., 2014, 12, 7100-7109. 14. Mercury Update: Impact on Fish Advisories; EPA Fact Sheet EPA- 823-F-01-001; Environmental Protection Agency, Office of Water:Washington, DC, 2001, 1-10. 15. Vedamalai, M.; Wu, S.-P., A BODIPY-based colorimetric and fluorometric chemosensor for Hg(ii) ions and its application to living cell imaging. Org. Biomol. Chem., 2012, 10, 5410-5416. 16. Yu, S.-Y.; Wu, S.-P., A highly selective turn-on fluorescence chemosensor for Hg(II) and its application in living cell imaging. Sens. Actuator B-Chem., 2014, 201, 25-30. 17. Liu, S.-R.; Wu, S.-P., New water-soluble highly selective fluorescent chemosensor for Fe (III) ions and its application to living cell imaging. Sens. Actuator B-Chem., 2012, 171–172, 1110-1116. 18. Hu, J.; Hu, Z.; Liu, S.; Zhang, Q.; Gao, H.-W.; Uvdal, K., A new ratiometric fluorescent chemodosimeter based on an ICT modulation for the detection of Hg2+. Sens. Actuator B-Chem., 2016, 230, 639-644. 19. Manna, A.; Sarkar, D.; Goswami, S.; Quah, C. K.; Fun, H.-K., Single excited state intramolecular proton transfer (ESIPT) chemodosimeter based on rhodol for both Hg2+ and OCl-: ratiometric detection with live-cell imaging. RSC Adv., 2016, 6, 57417-57423. 20. D. S. McClure, J. Chem. Phys., 1952, 20, 682-686. 21. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J., A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev., 2008, 37, 1465-1472. 22. Yang, Y.; Zhao, Q.; Feng, W.; Li, F., Luminescent Chemodosimeters for Bioimaging. Chem. Rev., 2013, 113, 192-270. 23. Qu, Z.; Li, P.; Zhang, X.; Han, K., A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells. J. Mater. Chem. B 2016, 4, 887-892. 24. Kao, S.-L.; Venkatesan, P.; Wu, S.-P., A highly selective fluorescent sensor for Hg(ii) based on an NTe2 chelating motif and its application to living cell imaging. New J. Chem., 2015, 39, 3551-3557. 25. Ba, L. A.; Doring, M.; Jamier, V.; Jacob, C., Tellurium: an element with great biological potency and potential. Org. Biomol. Chem., 2010, 8, 4203-4216.
chapter-6 1. Aznar, E.; Oroval, M.; Pascual, L.; Murguía, J. R.; Martínez-Máñez, R.; Sancenón, F., Gated Materials for On-Command Release of Guest Molecules. Chem. Rev., 2016, 116, 561-718. 2. Ramaswami, R.; Harding, V.; Newsom-Davis, T., Novel cancer therapies: treatments driven by tumour biology. Postgrad. Med. J., 2013, 89, 652-8. 3. Kipp, J. E., The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284, 109-22. 4. Gupta, S. C.; Sung, B.; Prasad, S.; Webb, L. J.; Aggarwal, B. B., Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci., 2013, 34, 508-17. 5. Brigger, I.; Dubernet, C.; Couvreur, P., Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54, 631-651. 6. Liu, J.; Stace-Naughton, A.; Jiang, X.; Brinker, C. J., Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. J. Am. Chem. Soc., 2009, 131, 1354-1355. 7. Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J., Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery. J. Am. Chem. Soc., 2009, 131, 7567-7569. 8. Yang, Y.; Achazi, K.; Jia, Y.; Wei, Q.; Haag, R.; Li, J., Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery. Langmuir, 2016, 32, 12453-12460. 9. Yuan, J.-J.; Schmid, A.; Armes, S. P.; Lewis, A. L., Facile Synthesis of Highly Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine)-Coated Gold Nanoparticles in Aqueous Solution. Langmuir, 2006, 22, 11022-11027. 10. Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X. J., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4, 6135-49. 11. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc., 2012, 134, 5722-5725. 12. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2007, 46, 7548-7558. 13. Wang, Y.; Price, A. D.; Caruso, F., Nanoporous colloids: building blocks for a new generation of structured materials. J. Mater. Chem., 2009, 19, 6451-6464. 14. Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I., Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41, 2590-605. 15. Wang, Y.; Wise, A. K.; Tan, J.; Maina, J. W.; Shepherd, R. K.; Caruso, F., Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small, 2014, 10, 4244-4248. 16. He, Q.; Shi, J., MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26, 391-411. 17. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J., Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Acc. Chem. Res., 2013, 46, 792-801. 18. Kresge, C.; Leonowicz, M.; Roth, W.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712. 19. Lu, J.; Liong, M.; Li, Z.; Zink, J. I.; Tamanoi, F., Biocompatibility, biodistribution, and drug‐delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6, 1794-1805. 20. Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T., Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Fun. Mat., 2008, 18, 3745-3758. 21. Burns, A.; Ow, H.; Wiesner, U., Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35, 1028-1042. 22. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Acc. Chem. Res., 2007, 40, 846-853. 23. Vallet-Regí, M.; Balas, F.; Arcos, D., Mesoporous Materials for Drug Delivery. Angew. Chem. Int. Ed., 2007, 46, 7548-7558. 24. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S. M.; Wiesner, U.; Bradbury, M. S., Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121, 2768-2780. 25. Lin, Y.-S.; Haynes, C. L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J. Am. Chem. Soc., 2010, 132, 4834-4842. 26. Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells. Small, 2009, 5, 57-62. 27. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153, 198. 28. Such, G. K.; Johnston, A. P. R.; Caruso, F., Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev., 2011, 40, 19-29. 29. Yan, Y.; Björnmalm, M.; Caruso, F., Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. Chem.Mat., 2014, 26, 452-460. 30. Chen, N.-T.; Cheng, S.-H.; Souris, J. S.; Chen, C.-T.; Mou, C.-Y.; Lo, L.-W., Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. J. Mat. Chem. B, 2013, 1, 3128-3135. 31. Daniels, T. R.; Delgado, T.; Helguera, G.; Penichet, M. L., The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immune., 2006, 121, 159-176. 32. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z., Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc., 2013, 135, 5068-5073. 33. Xie, M.; Shi, H.; Li, Z.; Shen, H.; Ma, K.; Li, B.; Shen, S.; Jin, Y., A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf., B 2013, 110, 138-147. 34. Balendiran, G. K.; Dabur, R.; Fraser, D., The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22, 343-352. 35. Bilalis, P.; Tziveleka, L.-A.; Varlas, S.; Iatrou, H., pH-Sensitive nanogates based on poly(l-histidine) for controlled drug release from mesoporous silica nanoparticles. Polym. Chem., 2016, 7, 1475-1485. 36. Gao, H.; Liu, X.; Tang, W.; Niu, D.; Zhou, B.; Zhang, H.; Liu, W.; Gu, B.; Zhou, X.; Zheng, Y.; Sun, Y.; Jia, X.; Zhou, L., 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale, 2016, 8, 19573-19580. 37. Tian, Y.; Guo, R.; Jiao, Y.; Sun, Y.; Shen, S.; Wang, Y.; Lu, D.; Jiang, X.; Yang, W., Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horiz., 2016, 1, 480-487. 38. Gayam, S. R.; Wu, S.-P., Redox responsive Pd(ii) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system. J. Mater. Chem. B 2014, 2, 7009-7016. 39. Choi, H. W.; Kim, J.; Kim, J.; Kim, Y.; Song, H. B.; Kim, J. H.; Kim, K.; Kim, W. J., Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery. ACS Nano, 2016, 10, 4199-4208. 40. Rwei, A. Y.; Wang, W.; Kohane, D. S., Photoresponsive nanoparticles for drug delivery. Nano today, 2015, 10 (4), 451-467. 41. Gayam, S. R.; Venkatesan, P.; Sung, Y.-M.; Sung, S.-Y.; Hu, S.-H.; Hsu, H.-Y.; Wu, S.-P., An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and vivo. Nanoscale, 2016, 8, 12307-12317. 42. Cheng, Y.-J.; Zeng, X.; Cheng, D.-B.; Xu, X.-D.; Zhang, X.-Z.; Zhuo, R.-X.; He, F., Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf., B 2016, 145, 217-225. 43. Li, H.; Qian, Z. M., Transferrin/transferrin receptor‐mediated drug delivery. Med. Res. Rev., 2002, 22, 225-250. 44. Verma, A.; Simard, J. M.; Worrall, J. W. E.; Rotello, V. M., Tunable Reactivation of Nanoparticle-Inhibited β-Galactosidase by Glutathione at Intracellular Concentrations. J. Am. Chem. Soc., 2004, 126, 13987-13991.
|