跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣昀廷
研究生(外文):Chiang, Yun-Ting
論文名稱:新穎同碳雙碳烯之鈀金屬錯合物的合成、結構鑑定及應用於Suzuki-Miyaura反應
論文名稱(外文):Synthesis, Characterization and Catalytic Application of Novel Palladium-Carbodicarbene Complexes in Suzuki-Miyaura Reaction
指導教授:王朝諺
指導教授(外文):Ong, Tiow-Gan
口試委員:蔡福裕郭俊宏
口試委員(外文):Tsai, Fu-YuKuo, Chun-Hong
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:155
中文關鍵詞:同碳雙碳烯鈴木宮浦交叉偶合反應
外文關鍵詞:carbodicarbeneSuzuki-Miyauracross-coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
同碳雙碳烯或稱為彎曲型重烯,其作為配位基設計與在有機金屬的研究仍屬於新穎的領域。本論文採用簡單的SN2反應合成出兩側取代基相異之同碳雙碳烯,再分別以三級膦與吡啶之衍生分子搭配同碳雙碳烯合成一系列的鈀金屬錯合物,並探討同碳雙碳烯的錯合物結構與其催化活性研究。藉由X-ray晶體結構解析得知,配位基會影響錯合物的順反構型。分子內的π電子相互作用,會使具有苯基的三級膦鈀金屬錯化合物呈現順式結構,此現象也利用變溫的氫核磁共振實驗佐證。
我們將合成的鈀金屬錯合物應用於Suzuki-Miyaura交叉偶合反應,其中以空氣穩定的 [PdCl2(CDC)(PPh3)] 15a催化效果最佳,對於芳香基溴化物與硼酸的推拉電子特性和立體阻礙之官能基皆有良好的耐受性。反應機制的探討指出,空氣中的氧與二甲基亞碸能穩定鈀金屬催化劑,有助於催化循環的進行,此特性對於常見的Suzuki-Miyaura反應的機制及反應性方面是新的見解。 
Carbodicarbene so called as bent allene is a divalent carbon (0) or carbon supported by two N-heterocyclic carbene (NHC). It is a strong electron donor ligand for supporting many metal complexes. In this thesis, we reported a preparation of unsymmetrical carbodicarbene via SN2 reaction. We also prepared a series of novel carbodicarbene palladium complexes bearing a different phosphine or pyridine derivatives ligands. The single crystal X-ray structural analysis and spectroscopic studies have been used to understand the trans/cis isomeric behavior of the complexes. The experimental evidences demonstrated that the cis-coordination arrangement in these complexes is resulted from the intramolecular π-π interaction between ligands.
In this work, we have also investigated the catalytic properties of these palladium-carbodicarbene complexes. The air-stable complex [PdCl2(CDC)(PPh3)] 5a was found to be highly active in Suzuki-Miyaura cross-coupling reaction for variety of aryl bromides and boronic acids. We also deduced the possible mechanistic pathway involving Pd(0) and Pd(II). The oxygen and trace amount of DMSO play a subtle role in maintaining the active palladium species in the catalytic cycle and providing a new insights on mechanism and reactivity of Suzuki-Miyaura reaction.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
式目錄 xi
附表目錄 xiii
附圖目錄 xiv
簡稱說明 xx
第一章 緒論 1
1-1 前言 1
1-2 膦化物 3
1-3 碳烯 7
1-4 含氮雜環碳烯 10
1-5 彎曲型重烯—同碳雙碳烯 13
1-6 Suzuki-Miyaura 交叉偶合反應 18
1-7 研究動機 21

第二章 結果與討論 22
2-1 同碳雙碳烯之合成及探討 22
2-2 同碳雙碳烯之鈀金屬錯合物的合成及探討 26
2-2-1 同碳雙碳烯與三級膦或吡啶之鈀金屬錯合物的合成 27
2-2-2 同碳雙碳烯之鈀金屬錯合物的結構鑑定與探討 29
2-3 [PdCl2(CDC)(L)] 15應用於Suzuki-Miyaura交叉偶合反應 40
2-3-1 最佳化反應條件之探討 43
2-3-2 [Pd(CDC)(PPh3)Cl2] 15a催化芳香基溴化物與芳香基硼酸進行Suzuki-Miyaura偶合反應 47
2-4 Suzuki-Miyaura偶合反應機制探討 50
2-4-1 汞試驗 (Mercury test) 50
2-4-2 氧氣與二甲基亞碸之對照實驗探討 51
2-4-3 合理的反應機制推導 54
第三章 結論 56
第四章 實驗方法 57
4-1 實驗儀器 57
4-1-1 核磁共振儀 57
4-1-2 高解析度磁場式質譜儀 58
4-1-3  X-ray單晶繞射解析 58
4-2 藥品與溶劑 59
4-3 實驗步驟 60
4-3-1 合成步驟 60
4-3-2 Suzuki-Miyaura反應 69
參考文獻 84
附錄一 X-ray晶體與數據 93
附錄二 核磁共振光譜圖 103
1. T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685–4696.
2. R. B. Bedford, M. Betham, J. P.H. Charmant, A. L. Weeks, Tetrahedron 2008, 64, 6038–6050.
3. Y. Yuan, H. Men, C. Lee, J. Am. Chem. Soc. 2004, 126, 14720–14721.
4. (a) H.-H. Chen, H.-A. Lin, Y.-H. Lai, S.-Y. Lin, C.-H. Chiang, H.-F. Hsu, T.-L. Shih, J.-J. Lee, C.-C. Lai, T.-S. Kuo, Chem. Eur. J. 2012, 18, 9543–9551. (b)Y. Ezhumalai, T.-H. Wang, H.-F. Hsu, Org. Lett. 2015, 17, 536–539.
5. (a) J. Chatt, F. G. Mann, J. Chem. SOC. 1938,1949–1954. G. J. Leigh, N. Winterton, Eds., Modern Coordination Chemistry: The Legacy of Joseph Chatt, Royal Society of Chemistry, Cambridge, 2002. (c) W. Levason in The Chemistry of Organophosphorus Compounds, Volume 1, F. R. Hartley, Ed., John Wiley & Sons, New York, 1990.
6. M. Yamanaka, K. Mikami, Organometallics 2005, 24, 4579–4587.
7. R. H. Crabtree, The organometallic chemistry of the transition metals, 6th ed., John Wiley & Sons, New York, 2014.
8. C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2956–2965.
9. (a) C. A. Tolman, Chem. Rev. 1977, 77, 313–348. (b) K. A. Bunten, L. Chen, A. L. Fernandez, A. J. Poë, Coord. Chem. Rev. 2002, 233, 41–51.

10. (a) D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39–91. (b) K. Hirai, T. Itoh, H. Tomioka, Chem. Rev. 2009, 109, 3275–3332.
11. B. C. Gilbert, D. Griller, A. S. Nazran, J. Org. Chem. 1985, 50, 4738–4742.
12. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
13. R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451–5457.
14. H. W. Wanzlick, H. J. Schonher, Angew. Chem. Int. Ed. 1968, 7, 141–143.
15. K. Öfele, J. Organomet. Chem. 1968, 12, 42–43.
16. A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363.
17. (a) M. Regitz, Angew. Chem., Int. Ed. Engl. 1996, 35, 725–728. (b) A. J. Arduengo, R. Krafczyc, Chem. Zeit. 1998, 32, 6–14. (c) V. Lavallo, Y. Canac, A. DeHope, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 7236–7239. (d) L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz, V. César, Chem. Rev. 2011, 111, 2705–2733.
18. R. W. Saalfrank, H. Maid, Chem. Commun. 2005, 5953–5967.
19. R. W. Saalfrank, C. J. Lurz, Houben Weyl, Vol. E15 (Eds.: Kropf, H.; Schaumann, E.); Thieme: Stuttgart, 1993, 2959–3107.
20. F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem. Soc. 1961, 83, 3539–3540.
21. J. Vicente, A. R. Singhal, Organometallics 2002, 21, 5887–5900.
22. (a) T. Kashiwagi, N. Yasuoka, N. Kasai ,M. Kukudo, J. Chem. Soc. D, 1969, 317–318. (b) F. Brion, D. Martina, Tetrahedron Lett. 1982, 23, 861–864. (c) M. I. Bruce, T. W. Hambley, J. R. Rodgers, M. R. Snow, F. S. Wong, Aust. J. Chem., 1982, 35, 1323–1333. (d) D. L. Hughes, A. J. L. Pombeiro, C. J. Pickett, R. L. Richards, J. Chem. Soc., Chem. Commun., 1984, 992–993. (e) C. A. Akpan, M. F. Meidine, J. F. Nixon, M. Yoshifuji, K. Toyota, N. lnamoto, J. Chem. Soc., Chem. Commun., 1985, 946–947.
23. R. Tonner, F. Oxler, B. Neumuller, W. Petz, G. Frenking, Angew. Chem., Int. Ed. 2006, 45, 8038–8042.
24. R. Tonner, G. Frenking, Angew. Chem., Int. Ed. 2007, 46, 8695–8698.
25. C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2008, 47, 3206–3209.
26. A. Fürstner, M. Alcarazo, H. Krause, C. W. Lehmann, J. Am. Chem. Soc. 2007, 129, 12676–12677.
27. W.-C. Chen, Y.-C. Hsu, C.-Y. Lee, G. P. A. Yap, T.-G. Ong, Organometallics 2013, 32, 2435–2442.
28. A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann, Angew. Chem., Int. Ed. 2008, 47, 3210–3214.

29. (a) 李敬郁,「同碳雙碳烯化合物及其主族錯合物之合成及探討」,國立臺灣科技大學,碩士論文,民國103年7月。(b) 陳炯廷,「同碳雙碳烯及其硼錯合物之合成及探討」,國立交通大學,碩士論文,民國104年7月。(c) 彭峻嶸,「開發骨架多樣性的同碳雙烯及直接觀察硼氫活化促使胺類與二氧碳進行甲基反應」,國立中央大學,碩士論文,民國105年7月。
30. (a) W.-C. Chen, J.-S. Shen, T. Jurca, C.-J. Peng, Y.-H. Lin, Y.-P. Wang, W.-C. Shih, G. P. A. Yap, T.-G. Ong, Angew. Chem. Int. Ed. 2015, 54, 15207–15212. (b) Y.-C. Hsu, J.-S. Shen, B.-C. Lin, W.-C. Chen, Y.-T. Chan, W.-M. Ching, G. P. A. Yap, C.-P. Hsu, T.-G. Ong, Angew. Chem. Int. Ed. 2015, 54, 2420–2424. (c) T.-H. Wang, W.-C. Chen, T.-G. Ong, J. Chin. Chem. Soc. 2017, 64, 124–132.
31. C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062–5085
32. (a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 3437–3440. (b) N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866–867.
33. N. Miyaura , T. Yanagi, A. Suzuki, Synth. Commun. 1981, 11, 513–519.
34. G. A. Molander, L.A. Felix, J. Org. Chem. 2005, 70, 3950–3956.
35. (a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483. (b) A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6723–6737.
36. (a) J. K. Stille, K. S. Y. Lau, Acc. Chem. Res. 1977, 10, 434–442. (b) Smith, George B.; Dezeny, George C.; Hughes, David L.; King, Anthony O.; Verhoeven, Thomas R. J. Org. Chem. 1994, 59, 8151–8156. (c) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63, 458–460. (d) K. Matos; J. A. Soderquist, J. Org. Chem. 1998, 63, 461–470. (e) A. L. Casado, P. Espinet, Organometallics 1998, 17, 954–959.
37. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, S1–S19.
38. T. E. Schmid, D. C. Jones, O. Songis, O. Diebolt, M. R. L. Furst, A. M. Z. Slawin, C. S. J. Cazin, Dalton Trans. 2013, 42, 7345–7353.
39. C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885–3896.
40. B. Viossat, N.-H. Dung, F. Robert, Acta Cryst. 1993, C49, 84–85.
41. (a) L. Ray, M.M. Shaikh, P. Ghosh, Dalton Trans. 2007, 4546–4555. (b) S. G. Weber, C. Loos, F. Rominger, B. F. Straub, Arkivoc 2012, 226–242. (c) C. J. Adams, M. Lusi, E. M. Mutambi, A. G. Orpen, Chem. Commun. 2015, 51, 9632–9635.
42. (a) N. Hadei, E. A. B. Kantchev, C. J. O'Brie, M. G. Organ, Org. Lett. 2005, 7, 3805–3807. (b) C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J. 2006, 12, 4743–4748. (c) C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah, M. G. Organ, Angew. Chem. Int. Ed. 2012, 51, 3314–3332. (d) R. Zhong, A. Pöthig, Y. Feng, K. Riener, W. A. Herrmann, F. E. Kühn, Green Chem. 2014, 16, 4955–4962. (e) X.-B. Lan, F.-M. Chen, B.-B. Ma, D.-S. Shen, F.-S. Liu, Organometallics 2016, 35, 3852–3860.
43. (a) F. E. Hahn, M. C. Jahnke, T. Pape, Organometallics 2006, 25, 5927–5936. (b) A. Flahaut, S. Roland, P. Mangeney, J. Organomet. Chem. 2007, 692, 5754–5762. (c) N. Debono, A. Labande, E. Manoury, J.-C. Daran, R. Poli, Organometallics 2010, 29, 1879–1882. (d) A. Kumar, M. K. Gangwar, A. P. Prakasham, D. Mhatre, A. Ch. Kalita, P. Ghosh, Inorg. Chem. 2016, 55, 2882−2893. (e) A. Marchenko, G. Koidan, A. N. Hurieva, Y. Vlasenko, A. Kostyuk, A. Biffis, Organometallics 2016, 35, 762–770.
44. (a) C.-Y. Liao, K.-T. Chan, C.-Y. Tu, Y.-W. Chang, C.-H. Hu, H. M. Lee, Chem. Eur. J. 2009, 15, 405–417. (b) K.-T. Chan, Y.-H. Tsai, W.-S. Lin, J.-R. Wu, S.-J. Chen, F.-X. Liao, C.-H. Hu, H. M. Lee, Organometallics 2010, 29, 463–472.
45. (a) J.-W. Wang, F.-H. Meng, L.-F. Zhang, Organometallics 2014, 33, 2902–2905. (b) T. Chen, J. Gao, M. Shi, Tetrahedron 2006, 62, 6289–6294. (c) O. Navarro, H. Kaur, P. Mahjoor, S. P. Nolan, J. Org. Chem. 2004, 69, 3173–3180.
46. (a) J. A. Widegren, R. G. Finke, J. Mol. Catal. A: Chem. 2003, 198, 317–341. (b) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609–679. (c) B. Inés, R. SanMartin, M. J. Moure, E. Domínguez, Adv. Synth. Catal. 2009, 351, 2124–2132. (d) J. P. Simeonea, J. R. Sowa, Tetrahedron 2007, 63, 12646–12654.
47. (a) B. A. Steinhoff, S. R. Fix, S. S. Stahl, J. Am. Chem. Soc. 2002, 124, 766–767. (b) S. S. Stahl, Angew. Chem. Int. Ed. 2004, 43, 3400–3420. (c) Stahl, S. S. Science 2005, 309, 1824–1826. (d) B. A. Steinhoff, S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 4348–4355.
48. (a) R. C. Larock, T. R. Hightower, J. Org. Chem. 1993, 58, 5298–5300. (b) R. A. T. M. van Benthem, H. Hiemstra, J. J. Michels, W. N. Speckamp, J. Chem. Soc. Chem. Commun. 1994, 357–359. (c) R. C. Larock, T. R. Hightower,G. A. Kraus, P. Hahn, D. Zheng, Tetrahedron Lett. 1995, 36, 2423–2426. (d) R. A. T. M. van Benthem, H. Hiemstra, P. W. N. M. van Leeuwen, J. W. Geus, W. N. Speckamp, Angew. Chem. Int. Ed. Engl. 1995, 34, 457–460. (e) K. P. Peterson, R. C. Larock, J. Org. Chem. 1998, 63, 3185–3189. (f) M. Rönn, P. G. Andersson, J. E. Bäckvall, Acta Chem. Scand. 1997, 51, 773–777. (g) C. Zhou, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 2302–2303. (h) C. Zhou, R. C. Larock, J. Org. Chem. 2006, 71, 3184–3191.
49. (a) B. Tao, D. W. Boykin, J. Org. Chem. 2004, 69, 4330–4335. (b) I. D. Kostas, F. J. Andreadaki, D. Kovala-Demertzi, C. Prentjas, M. A. Demertzis, Tetrahedron Lett. 2005, 46, 1967–1970. (c) T. Mino, Y. Shirae, M. Sakamoto, T. Fujita, J. Org. Chem. 2005, 70, 2191–2194. (d) I. D. Kostas, B. R. Steele, A. Terzis, S. V. Amosova, A. V. Martynov, N. A. Makhaeva, Eur. J. Inorg. Chem. 2006, 2642–2646. 
50. (a) W. Han, C. Liu, Z. Jin, Org. Lett. 2007, 9, 4005–4007. (b) W. Han, C. Liu, Z. Jin, Adv. Synth. Catal. 2008, 350, 501–508 (c) X. Rao, C. Liu, Y. Xing, Y. Fu, J. Qiu, Z. Jin, Asian J. Org. Chem. 2013, 2, 514–518. (d) C. Liu, X. Rao, Y. Zhang, X. Li, J. Qiu, Z. Jin, Eur. J. Org. Chem. 2013, 4345–4350. (e) C. Liu, X. Li, Chem. Rec. 2016, 16, 84–97.
51. (a) C. Liu, W. Yang, Chem. Commun. 2009, 6267–6269. (b) C. Liu, Y. Zhang, N. Liu, J. Qiu, Green Chem. 2012, 14, 2999–3003. (c) L. A. Adrio, B. N. Nguyen, G. Guilera, A. G. Livingstonc, K. K. Hii, Catal. Sci. Technol. 2012, 2, 316–323. (d) X. Rao, C. Liu, J. Qiu, Z. Jin, Org. Biomol. Chem. 2012, 10, 7875–7883.
52. (a) G.-J. T. Brink, I. W. C. E. Arends, R. A. Sheldon, Science, 2000, 287, 1636–1639. (b) C. Adamo, C. Amatore, I. Ciofini, A. Jutand, H. Lakmini, J. Am. Chem. Soc. 2006, 128, 6829–6836. (c) V. Jurčík, T. E. Schmid, Q. Dumont, A. M. Z. Slawin, C. S. J. Cazin, Dalton Trans., 2012, 41, 12619–12623. (d) J. N. Jaworski, S. D. McCann, I. A. Guzei, S. S. Stahl, Angew. Chem. Int. Ed. 2017, 56, 3605–3610.
53. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals. 6th ed., Butterworth-Heinemann: Burlington, MA, 2009.
54. J. Pons, J. García-Antón, X. Solans, M. Font-Bardiab, J. Ros, Acta Cryst. 2008, E64, m621.
55. N. D. Kolosova, A. N. Sobolev, T. E. Kron, E. S. Petrov, V. K. Bel'skii, Koord. Khim. (Russ. Coord. Chem.), 1986, 12, 393.
56. V. V. Grushin, C. Bensimon, H. Alper, Inorg. Chem., 1994, 33 (21), 4804–4806.
57. F. Zordan, L. Brammer, P Sherwood, J. Am. Chem. Soc., 2005, 127 (16), 5979–5989.
58. Q. Huang, J. Qiu, L. Li, G. Xu, Z. Zhou, Transition Met. Chem. 2014, 39, 661–665.
59. H. Min, H. Miyamura, S. Kobayashi, Chem. Lett. 2016, 45, 837–839.
60. S. Pradhan, R. P. John, RSC Adv., 2016, 6, 12453–12460.
61. X. Ma, Y. Liu, P. Liu, J. Xie, B. Dai, Z. Liu, Appl. Organometal. Chem. 2013, 27, 707–710.
62. Y. Monguchi, F. Wakayama, S. Ueda, R. Ito, H. Takada, H. Inoue, A. Nakamura, Y. Sawamaa, H. Sajiki, RSC Adv., 2017, 7, 1833–1840.
63. B. Tao, D. W. Boykin, Tetrahedron Lett. 2002, 43, 4955–4957.
64. T. Xiao, X. Dong, Y. Tang, L. Zhou, Adv. Synth. Catal. 2012, 354, 3195–3199.
65. M. Xu, X. Li, Z. Sun, T. Tu, Chem. Commun., 2013, 49, 11539–11541.
66. Agency for Science, Technology and Research, U. S. Patent No. 14/913,479, US2016207034 A1 (21 July, 2016).
67. Otsuka Pharmaceuticals Co., Ltd., U. S. Patent No. 09/431,635, US6335327 B1 (1 January, 2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top