|
[1] Zubarev, R. A.; Makarov, A., “Orbitrap mass spectrometry”, Anal. Chem., 2013, 85, 5288-5296. [2] Makarov, A., “Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis”, Anal. Chem., 2000, 72, 1156-1162. [3] Morrison, S., “The dynamics of illicit drugs production: future sources and threats crime”, Law Soc. Change, 1997, 27, 121–138. [4] McDonough, M; Kennedy, N; Glasper, A; Bearn, J., “Clinical features and management of gamma-hydroxybutyrate (GHB) withdrawal: a review”, Drug Alcohol Depend., 2004, 75, 3–9. [5] Leung, K. W.; Wong, Z. C. F.; Ho, J. Y. M.; Yip, A. W. S.; Ng, J. S. C.; Ip, S. P. H.; Ng, W. Y. Y.; Ho, K. K. L.; Duan, R.; Zhu, K. Y.; Tsim, K. W. K., “Determination of hair ketamine cut-off value from Hong Kong ketamine users by LC–MS/MS analysis”, Forensic Sci. Int., 2016, 259, 53–58. [6] Zolotov, Y. A.; Ivanov, V.M.; Amelin, V. G., “Test methods for extra-laboratory analysis”, Trends Anal. Chem., 2002, 21, 302–319. [7] Philp, M.; Shimmon, R.; Stojanovska, N.; Tahtouh, M.; Fu, S., “Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials”, Anal. Methods, 2013, 20, 5402-5410. [8] Ali, E. M. A.; Edwards, H. G. M.; Scowen, I. J., “Rapid in situ detection of street samples of drugs of abuse on textile substrates using micro Raman spectroscopy”, Spectrochim. Acta A, 2011, 80, 2–7. [9] Wen, Y.; Pei, H.; Wan, Y.; Su, Y.; Huang, Q.; Song, S.; Fan, C., “DNA nanostructur-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors”, Anal. Chem., 2011, 83, 7418–7423. [10] Lachenmeier, K.; Musshoff, F.; Madea, B., “Determination of opiates and cocaine in hair using automated enzyme immunoassay screening methodologies followed by gas chromatographic–mass spectrometric (GC–MS) confirmation”, Forensic Sci. Int., 2006, 159, 189–199. [11] Meyer, M. R.; Wilhelm, J.; Peters, F. T.; Maurer, H. H., “Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry”, Anal. Bioanal. Chem., 2010, 397, 1225– 1233. [12] Choe, S.; Lee, J.; Choi, H.; Park, Y.; Lee, H.; Jo, J.; Park, Y.; Kim, E.; Pyo, J.; Lee, H. J., Kim, S., “Estimation of the synthetic routes of seized methamphetamines using GC–MS and multivariate analysis”, Forensic Sci. Int., 2016, 259, 85–94. [13] Gergov, M.; Ojanpera, I.; Vuori, E., “Simultaneous screening for 238 drugs in blood by liquid chromatography–ionspray tandem mass spectrometry with multiple-reaction monitoring”, J. Chromatogr. B, 2003, 795, 41–53. [14] Zhang, T.; Chen, X.; Yang, R.; Xu, Y., “Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry”, Forensic Sci. Int., 2015, 248, 10–14. [15] Li, L.-P.; Feng, B.-S.; Yang, J.-W.; Chang, C.-L., Yu Bai; Liu H.-W., “Applications of ambient mass spectrometry in high-throughput screening”, Analyst, 2013, 138, 3097-3103. [16] Cody, R. B.; Laramee, J. A.; Durst, H. D., “Versatile new ion source for the analysis of materials in open air under ambient conditions”, Anal. Chem., 2005, 77, 2297– 2302. [17] LaPointe, J.; Musselman, B.; O’Neill, T.; Shepard, J.R.E., “Detection of bath salt synthetic cathinones and metabolites in urine via DART-MS and solid Phase”, J. Am. Soc. Mass Spectrom., 2015, 26, 159–165. [18] Lesiak, A. D.; Musah, R. A.; Cody, R. B.; Domin, M. A.; Dane, A. J.; Shepard, J. R., “Direct analysis in real time mass spectrometry (DART-MS) of “bath salt” cathinone drug mixtures”, Analyst, 2013, 138, 3424–3432. [19] Zhao, Y.; Lam, M.; Wu, D.; Mak, R., “Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation”, Rapid Commun. Mass Spectrom., 2008, 22, 3217–3224. [20] Mess A.; Enthaler B.; Fischer, M.; Rapp, C.; Pruns, J. K.; Vietzke, J.-P., “A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS”, Talanta, 2013, 103, 398–402. [21] Vaclavik, L.; Rosmus, J.; Popping, B.; Hajslova, J., “Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry”, J. Chromatogr. A, 2010, 1217, 4204– 4211. [22] Mattarozzi, M.; Milioli, M.; Cavalieri, C.; Bianchi, F.; Careri, M., “Rapid desorption electrospray ionization-high resolution mass spectrometry method for the analysis of melamine migration from melamine tableware”, Talanta, 2012, 101, 453–459. [23] Tzinga, S.-H.; Ding, W.-H., “Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography–tandem mass spectrometry with furan chemical ionization”, J. Chromatogr.A., 2010, 1217, 6267–6273. [24] Grange, A.H.; Sovocool, G. W., “Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry”, Rapid Commun. Mass Spectrom., 2011, 25, 1271–1281. [25] Song, L.; Gibson, S. C.; Bhandari, D.; Cook, K. D.; Bartmess, J.E., “Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept”, Anal. Chem., 2009, 81, 10080–10088. [26] Couper, F.; Logan, B., “Determination of gamma-hydroxybutyrate (GHB) in biological specimens by GC–MS”, J. Anal. Toxicol., 2000, 24, 1–7. [27] Elian, A., “A novel method for GHB detection in urine and its application in drug facilitated sexual assaults”, Forensic Sci. Int., 2000, 109, 183–187. [28] Meyers, J.E.; Almirall, J. R., “Analysis of gamma-hydroxybutyric acid (GHB) in spiked water and beverage samples using solid phase microextraction (SPME) on fiber derivatization/gas chromatography–mass spectrometry (GC/MS)”, J. Forensic Sci., 2005, 50, 1–6. [29] K, Z. K.; Nikdaos, R.; Nikolaos, G.; Helen, T.-P.; Theodoridis, G. A., “A new method for the HPLC determination of gammahydroxybutyric acid (GHB) following derivatization with a coumarin analogue and fluorescence detection: application in the analysis of biological fluids”, Talanta, 2008, 75, 356–361. [30] Chisum, W. J.; Turvey, B. “Evidence dynamics: Locard’s exchange principle & crime reconstruction”, J. B. Profiling, 2000, 1(1). [31] Ghelardi, E.; Degno, I.; Colombini, M. P.; Mazurek, J.; Schilling, M.; Learner, T., “Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples”, Anal Bioanal Chem., 2015, 407, 1415-1431. [32] Sparenga, S., “The Microscopic Identification of Organic Pigments:A New Look at an Old Technique”, McCrone Research Institute, Microscope, 2004, 52 (2), 63-70. [33] Zi ˛eba-Palus, J.; Michalska, A; Weselucha-Birczyriska, A., "Characterisation of paint samples by infrared and Raman spectroscopy for criminalistic purposes”, J. Mol. Struct., 2011, 993, 134–141. [34] van der Pal, K. J.; Sauzier, G.; Maric, M.; Bronswijk, W. V.; Pitts, J.; Lewis, S. W., “The effect of environmental degradation on the characterisation of automotive clear coats by infrared spectroscopy”, Talanta, 2016, 148, 715-720. [35] Zi˛eba-Palus, J.; Milczarek, J. M.; Koscielniak, P., “Application of Infrared Spectroscopy and Pyrolysis-Gas Chromatography-Mass Spectrometry to the analysis of Automobile Paint Samples”, Chem. Anal., 2008, 53, 109-121. [36] Zi˛eba-Palus J.; Zadora, G.; Milczarek, J. M.; Ko´scielniak, P. “Pyrolysis-gas chromatography/mass spectrometry analysis as a useful tool in forensic examination of automotive paint traces”, J. Chromatog. A, 2008, 1179, 41–46. [37] Milczarek, J. M.; Zi˛eba-Palus, J., “Examination of spray paints on plasters by the use of pyrolysis-gaschromatography/mass spectrometry for forensic purposes”, J. Anal. Appl. Pyrolysis, 2009, 86, 252–259. [38] Zi˛eba-Palus, J.; Was-Gulaba, J., “An investigation into the use of micro-Raman spectroscopy for the analysisof car paints and single textile fibres”, J. of Mol. Struct., 2011, 993, 127–133. [39] Bieleman, J. H., Additives for Coatings, Wiley-VCH, 2000. [40] Streitberger, H.-J.; Dossel, K.-F., Automotive Paints and Coatings, Wiley-VCH, 2008. [41] 陳泰宏,包埋技術在微量汽車油漆鑑識上之刑事應用,中央警察大學鑑識科學 研究所碩士論文,2001。 [42] Thoonen, G.; Nys, B.; Haeghen, Y. V.; Roy, G. D.; Scheunders, P., “Automatic Forensic analysis of automotive paints using optical microscopy”, Forensic Sci. Int., 2016, 259, 210-220. [43] Sisco, E.; Dake, J.; Bridge, C., “Screening for traces explosives by AccuTOFTM –DART: an in-depth validation study”, Forensic Sci. Int., 2013, 232, 160-168. [44] DeRoo, C. S.; Armitage, R. A., “Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry”, Anal. Chem., 2011, 83, 6924–6928. [45] Lesiak, A. D.; Cody, R. B.; Dane, A. J.; Musah, R. A., “Rapid detection by analysis in real time-mass spectrometry (DART-MS) of psychoactive plant drugs of abuse: the case of Mitragyna speciosa aka “Kratom”, Forensic Sci. Int., 2014, 242, 210-218. [46] Srbek, J.; Klejdus, B.; Dousa, M.; Brichac, J.; Stasiak, P.; Reitmajer, J.; Novakova, L., “Direct analysis in real time-High resolution mass spectrometry as a valuable tool for the pharmaceutical drug development”, Talanta, 2014, 130, 518-526. [47] Vaclavik, L.; Zachariasova, Hrbek, M.; V.; Hajslova, J., “Analysis of multiple mycotoxin in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry”, Talanta, 2010, 82 1950-1957. [48] Hajslova, J.; Cajka, T.; Vaclavik, L., “Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis”, Trends in Anal. Chem., 2011, 30, 204-218. [49] Haunschmidt, M.; Klampfl, C. W.; Buchbergera W.; Hertsens, R. “Rapid identification of stabilisers in polypropylene using time-of-flight mass spectrometry and DART as ion source”, Analyst, 2010, 135, 80–85. [50] Song, L.; Gibson, S. C.; Bhandari, D.; Cook, K. D.; Bartmess, J. E., “Ionization mechanism of positive-ion direct analysis in real time: A transient microenvironment concept”, Anal. Chem., 2009, 81, 10080–10088. [51] Christian D. R., Forensic Investigation of Clandestine Laboratories, CRC Press, 2004. [52] NIOSH Method 9106, NIOSH Manual of Analytical Methods (5th edn), (draft). Available:http://www.cdc.gov/iosh/review/public/176/pdfs/NIOSH9106FINAL03. pdf. [53] NIOSH Method 9109, NIOSH Manual of Analytical Methods,(5th edn.), (draft). Available:http://www.cdc.gov/ iosh/review/public/177/pdfs/NIOSH9109Final. pdf. [54] Wickman, D. C.; Siso, M. C.; Reynolds, J. M.; Perkins, J. B., “Methamphetamine on cotton gauze wipes by LC/MS/SIM. Data Chem Laboratories”, Inc. NIOSH 9111, Issue 1, Backup Data Report, 2005. Available:http://www.cdc.gov/niosh/review/public/178/pdfs/9111Methamphetaminebackup Report12‐8‐05pcs. pdf. [55] Cousins, D. R., Forensic Sci. Rev., 1989, 1(2), 141-161. [56] ASTM E2225-02 Standard Guid for Forensic Examination of Fabrics and Cordage, 2010, 887-889. [57] Rothenbacher, T.; Schwack, W., “Rapid and nondestructive analysis of phthalic acid esters in toys made of poly(vinyl chloride) by direct analysis in real time single-quadrupole mass spectrometry”, Rapid Commun. Mass Spectrom., 2009, 23, 2829–2835. [58] ASTM E1610-02 Standard Guid for Forensic Paint Comparison, 2010, 526-529. [59] Miyaguchi, Hajime; Inoue, Hiroyuki, “Determination of amphetamine-type stimulants, cocaine and ketamine inhuman hair by liquid chromatography/linear ion trap–Orbitrap hybrid massspectrometry”, Analyst, 2011, 136, 3503–3511. [60] Abdullah, A. F. L.; Miskelly, G. M., “Recoveries of trace pseudoephedrine and methamphetamine residues from impermeable household surfaces: Implications for sampling methods used during drug remediation of clandestine methamphetamine laboratories”, Talanta, 2010, 81, 455–461. [61] Sua, A.-K.; Liu, J.-T.; Lin, C.-H., “Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry”, Talanta, 2005, 67, 718–724. [62] Hu, Q.; Talaty, N.; Noll, R. J.; Cooks, R. G., “Desorption electrospray ionization using an Orbitrap mass spectrometer: Exact mass measurements on drugs and peptides”, Rapid Commun. Mass Spectrom., 2006, 20, 3403–3408. [63] Society of Hair Testing, “Recommendations for hair testing in forensic cases”, Forensic Sci. Int., 2004, 145, 83–84. [64] Meng, L.; Wang, B.; Luo, F.; Shen, G.; Wang, Z.; Guo, M., “Application of dispersive liquid–liquid microextraction and CE with UV detection for the chiral separation and determination of the multiple illicit drugs on forensic samples”, Forensic Sci. Int., 2011, 209, 42–47. [65] Qizhi Hu; NariTalaty; Robert J. Noll; R. Graham Cooks, “Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides”, Rapid Commun. Mass Spectrom., 2006, 20(22), 3403–3408. [66] Oakley, L. H.; Fabian, D. M.; Mayhew, H. E.; Svoboda, S. A.; Wustholz, K. L., “Pretreatment Strategies for SERS Analysis of indigo and Prussian blue in aged painted surfaces”, Anal. Chem., 2012, 84, 8006-8012. [67] Miyaguchi, H.; Inoue, H., “Determination of amphetamine-type stimulants, cocaine and ketamine in human hair by liquid chromatography/linear ion trap–Orbitrap hybrid mass spectrometry”, Analyst, 2011, 136, 3503–3511. [68] Sloggett, R.; Kyi, C.; Tse, N.; Tobin, M. J.; Puskar, L.; Best, S. P., “Microanalysis of artworks: IR microspectroscopy of paint cross-sections”, Vib. Spectrosc., 2010, 53, 77–82. [69] Gorkum, R. V.; Bouwman, E., Alkyd paint and paint driers, Coord. Chem. Rev., 2005. [70] Duce, C.; Porta, V. D.; Tine, M. R.; Spepi, A.; Ghezzi, L.; Colombini, M. P., “Emilia Bramanti, FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas”, Spectrochim. Acta, Part A, 2014, 130, 214-221. [71] Caddy, B., Forensic Examination of Glass and Paint: Analysis and interpretation, Taylor & Francis, New York, 2001. [72] Maric, M.; Bronswijk, W. v.; Lewis, S. W.; Pitts, K.; Martin, D. E., “Characterisation of chemical component migration in automotive paint by synchrotron infrared imaging”, Forensic Sci. Int., 2013, 228, 165-169. [73] Lavine, J. K.; Mirjankar, N.; Ryland, S.; Sandercock, M., “Wavelets and genetic algorithms applied to search prefilters for spectral library matching in forensics”, Talanta, 2011, 87, 46-52. [74] Anderman, T., “Selected cases of paint coating examination”, Problems Forensic Sci., 2001, XLVI, 335–344. [75] Trzcinska, B.; Kowalski, R.; Zieba-Palus, J., “Comparison of pigment content of paint samples using spectrometric methods”, Spectrochim. Acta, Part A, 2014, 130, 534-538. [76] Lv, J.; Zhang, W.; Liu, S.; Chen, R.; Feng, J.; Zhou, S.; Liu, Y., “Analysis of 52 automotive coating samples for forensic purposes with Fourier transform infrared spectroscopy (FTIR) and Raman microscopy”, Environ. Forensics, 2016, 17, 59-67. [77] Shi, R.; Cai, Y.; Lv, J.; Zhao, M.; Liu, Y.; Wang, Z.; Feng, J., “Discriminating paints with different clay additives in forensic analysis of automotive coatings by FT-IR and Raman spectroscopy”, Spectroscopy, 2012, 27, 36-40. [78] Zi˛eba-Palus, J.; Borusiewicz, R.; Kunicki, M., “PRAXIS-combined u-Raman and u-XRF spectrometers in the examination of forensic samples”, Forensic Sci. Int., 2008, 175 1–10. [79] Jochem, G.; Lehnert, R.J., “On the potential of Raman microscopy for the forensic analysis of coloured textile fibres”, Sci. Justice, 2002, 42, 215–221. [80] Thomas, J.; Buzzini, P.; Massonnet, G.; Reedy, B.; Roux, C., “Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1. Investigation of the effects of varying laser wavelength”, Forensic Sci. Int., 2005, 152, 189–197. [81] de Gelder, J.; Vandenabeele, P.; Govaert, F.; Moens, L., “Forensic analysis of automotive paints by Raman spectroscopy”, Raman Spectrosc., 2005, 36, 1059–1067. [82] Germinario, G.; van der Werf, I. D.; Sabbatini, L., “Chemical characterization of spray paints by a multi-analytical (Py/GC-MS, FTIR, u-Raman) approach”, Microchemical J., 2016, 124, 929-939. [83] Stowe, A. C.; Smyrl, N., “Raman spectroscopy of lithium hydride corrosion: selection of appropriate excitation wavelength to minimize fluorescence”, Vib. Spectrosc., 2012, 60, 133-136. [84] Massonnet, G.; Stoecklein, W., “Identification of organic pigments in coatings: applications to red automotive topcoats Part III: Raman spectroscopy (NIR FT-Raman)”, Sci. Justice, 1999, 39, 181-187. [85] Lindsay, H; Oakley, D. M.; Fabin, H. E., “Nayhew, Shelley A. Svoboda, Kristin L. Wustholz, Pretrement strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces”, Anal. Chem., 2012, 84, 8006–8012. [86] Cesaratto, A.; Leona, M.; Lombardi, J. R.; Daniela C.; Nevin, A.; Londero, P., “Detection of organic colorants in historical painting layers using UV laser ablation Surface-Enhanced Raman Microspectroscopy”, Angew. Chem. Int. Ed., 2014, 53, 14373-14377. [87] MacDonald, A. M.; Wyeth, P., “On the use of photobleaching to reduce fluorescence background in Raman spectroscopy to improve the reliability of pigment identification on painted textiles”, J. Raman Spectrosc., 2006, 37, 830-835. [88] Zięba-Palus, J.; Michalska, A., “Photobleaching as a useful technique in reducing of fluorescence in Raman spectra of blue automobile paint samples”, Vib. Spectrosc., 2014, 74, 6–12. [89] Likar, M. D.; Cheng, G.; Mahajan, N.; Zhang, Z., “Rapid identification and absence of drug tests for AG-013736 in 1 mg Axitinib tablets by ion mobility spectrometry and DARTTM mass spectrometry”, Pharmaceut. Biomed., 2011, 55, 569-573. [90] Saferstein, R., Foresic Science Handbook Volume I-II, 1982. [91] Cakić, S. M.; Bošković, L. B., “FTIR analysis and the effects of alkyd/ melamine resin ratio on the properties of the coatings”, Hemijska Industrija, 2009, 63(6), 637-643. [92] Gan, S.-N.; Tan, B.-Y., “FTIR studies of the curing reactions of palm oil alkyd-melamine enamels”, J. of Appl. Polym. Sci., 2001, 80, 2309-2315. [93] Koyama, S.; Morishima, M.; Miyauhi, Y.; Ishizawa, H., “Non-destructive identification and mixture ratio analysis of cotton-polyester blended textile roducts by IR spectroscopy”, TLIST, 2013, 2(4), 153-160.
|