跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泰宏
研究生(外文):Chen, Tai-hung
論文名稱:以即時直接分析離子源串聯式四極柱軌道式離子阱高解析質譜儀快速偵測微量有機顏料及非法藥物在刑事鑑定之應用
論文名稱(外文):Using DART-coupled Q-orbitrap Tandem Mass Spectrometry for Rapid Detection of Trace Organic Pigments and Illicit Drugs in Forensic Identification
指導教授:吳淑褓
指導教授(外文):Wu, Shu-Pao
口試委員:廖奕翰許馨云吳劍侯洪嘉呈
口試委員(外文):Liau, I-AnHsu, Hsin-YunWu, Chien-HouHorng, Jia-Cherng
口試日期:2017-6-29
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:136
中文關鍵詞:液態非法藥物有機顏料毒品快篩
外文關鍵詞:DART-MSIllicit drugsPigmentsFTIRGC/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一、 以即時直接分析離子源串聯式四極柱軌道式離子阱質譜儀分析微量液態非法藥物
即時直接分析離子源串聯式四極柱軌道式離子阱高解析質譜(DART- MS)無需要複雜之前處理過程,可直接分析常見以及新興的微量非法藥物。液態毒品通常毒品含量非常少,常見非法藥物為甲基安非他命(Methamphetamine) 、愷他命 (Ketamine) 、硝甲西泮 (Nimetazepam)等,近期發現新興非法藥物有對甲基乙基卡西酮 (p-Methethcathitone; 4-MEC)、對氯安非他命 (p-Chloroamphetamine; PCA)、4-氟甲基安非他命(p -Fluoromethamphetamine; 4-FMA),3,4-亞甲基雙氧焦二異丁基酮(3,4-Methylenedioxypyrovalerone; MDPV)、3,4-亞甲基雙氧甲基卡西酮(Methylone; bk-MDMA)等成分,含量通常在數百個到數千個PPM之間。以DART (Direct Analysis in Real Time ) 作為離子源,可快速轉換離子為正負電荷,無須前處理,可得到毒品化合物帶正電荷質子或負電荷去質子之分子量。另可透過二次質譜 (product ion mass) 確認化合物,分析時間約數十秒,可快速篩檢且所需樣品量少,無須進行萃取及衍生化等前處理,樽節剩餘樣品可用以其他分析。
二、 以即時分析離子源串聯式四極柱軌道式離子阱質譜儀分析微量有機顏料
車漆鑑識在交通事故中,扮演著重要關鍵角色,例如肇事逃逸案件。而有機顏料比例通常在車漆成分中約1%左右,甚至更低,在車漆成分中分析不易。以即時直接分析離子源串聯式四極柱軌道式離子阱高解析質譜(DART-MS)直接分析車漆中之有機顏料,本研究共分析紅色、黃色、橘色以及紫色等計12種常見有機顏料,並針對個別有機顏料PR254,PV23以及PV19等顏料與樹脂進行塗裝後,分析該紅色及紫色有機顏料,成功得到該有機顏料一次及二次質譜訊號並建立資料庫。另外針對2個案件實例,也可準確分析微量轉移漆中包含之有機顏料,無須複雜的前處理,且分析時間少於1分鐘,相較於其他方法,可快速分析車漆中之有機顏料,增加交通事故中油漆成分的比鑑數據。
1. Using DART-coupled Q-orbitrap Tandem Mass Spectrometry for Rapid in Detection of Multiple Illicit Liquid Street Drugs
Direct analysis in real time coupled to Q-orbitrap tandem mass Spectrometry (DART- MS) without requiring preparatory procedures was used to directly detect trace amounts of illegal street drugs, namely p-chloroamphetamine, p-fluoromethamphetamine, -hydroxybutyrate, ketamine, methamphetamine, 3,4-methylenedioxypyrovalerone, p-methylethcathinone, methylone, and nimetazepam, in solution and also in real drug samples. Exact mass determination of the drug samples was completed in less than 1 min. With the ability to rapidly identify drugs, this technique shows great potential as a useful analytical tool in the analysis of illicit street drugs, and has the significant advantages of simplicity and sensitivity without the sample preparation needed by other methods.




2. Direct Identification of Organic Pigment in Car Paints by DART-Coupled Q-orbitrap Tandem Mass Spectrometry
The appropriate examination of paint fragments involved in an accident,
such as a hit-and-run case, is often critical in forensic studies. However, organic pigments are usually minor components of automotive coatings; thus, it is difficult to discriminate them. This thesis demonstrates the utility of direct analysis in real time mass spectrometry (DART-MS) for the detection of a wide range of common organic pigments in vehicle paint. Twelve common organic pigments used in vehicle paints including red, yellow, orange, and purple were tested to provide a database for future vehicle paint examination. Two hit-and-run vehicle accidents cases happened in New Taipei City have been investigated with Fourier transform infrared spectroscopy (FTIR) and direct analysis in real time mass spectrometry (DART-MS). FTIR spectroscopy was first used to study the paint samples as a preliminary screening step. Most IR peaks come from binder and extenders. IR peaks of organic pigments were found to be weak and overlapped by resins. In contrast, the complete chemical characterization of organic pigments could be easily identified using DART-MS. DART-MS provides an excellent means to rapidly determine the presence of organic pigments in paint samples without a complicated pre-treatment or lengthy analysis time.
摘要----i
Abstract---------iii
目錄--------------viii
圖目錄------------xi
表目錄------------xv
附圖目錄----------xvi
第一章 緒論---------1
1.1前言------------1
1.2 儀器與操作原理--3
1.2.1 即時直接分析離子源原理----3
1.2.2 四極柱軌道式離子阱高解析質譜原理--------3
1.3 研究目標----------------5
第二章 以即時分析離子源串聯式四極柱軌道式離子阱質譜儀分析微量液態非法藥物-----------------6
2.1 研究背景-----------------6
2.2 研究動機----------------9
2.3 文獻回顧-------------------11
2.4 實驗部分--------------------17
2.4.1樣品備製-----------------17
2.4.2 儀器設定----------------18
2.4.2.1即時直接分析離子源串聯式四極柱軌道式離子阱高解析質譜
儀--------------18
2.4.2.2 氣相層析質譜儀-----18
2.4.2.3回收率評估----------19
2.4.2.4 檢量線--------------19
2.5 結果與討論--------------20
第三章 以即時分析離子源串聯四極柱軌道式離子阱質譜分析微量有機顏料--34
研究背景----------------34
3.2 研究動機------------47
3.3 文獻回顧-----------------48
3.3.1 醇酸樹脂-------------49
3.3.2 三聚氫胺樹脂---------50
3.3.3 聚氨基甲酸酯樹脂-----51
3.3.4 環氧樹脂------------52
3.3.5 壓克力樹脂---------------53
3.3.6 聚酯樹脂-----------------54
3.4 實驗部分-----------------------61
3.4.1樣品備製--------------------61
3.4.2 儀器設定-------------------63
3.4.2.1即時直接分析離子源串聯四極柱軌道式離子阱高解析質譜儀--63
3.4.2.2 傅里葉轉換紅外線光譜儀-----------63
3.4.3 鑑識實際案例研究---------64
3.5. 結果與討論-------------------65
第四章 總結-----------------------83
參考文獻--------------------------84
附圖------------------------------91
附錄(一)---------------------------122
附錄(二)-----------------------------128
[1] Zubarev, R. A.; Makarov, A., “Orbitrap mass spectrometry”, Anal. Chem., 2013, 85, 5288-5296.
[2] Makarov, A., “Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis”, Anal. Chem., 2000, 72, 1156-1162.
[3] Morrison, S., “The dynamics of illicit drugs production: future sources and threats crime”, Law Soc. Change, 1997, 27, 121–138.
[4] McDonough, M; Kennedy, N; Glasper, A; Bearn, J., “Clinical features and management of gamma-hydroxybutyrate (GHB) withdrawal: a review”, Drug Alcohol Depend., 2004, 75, 3–9.
[5] Leung, K. W.; Wong, Z. C. F.; Ho, J. Y. M.; Yip, A. W. S.; Ng, J. S. C.; Ip, S. P. H.; Ng, W. Y. Y.; Ho, K. K. L.; Duan, R.; Zhu, K. Y.; Tsim, K. W. K., “Determination of hair ketamine cut-off value from Hong Kong ketamine users by LC–MS/MS analysis”, Forensic Sci. Int., 2016, 259, 53–58.
[6] Zolotov, Y. A.; Ivanov, V.M.; Amelin, V. G., “Test methods for extra-laboratory analysis”, Trends Anal. Chem., 2002, 21, 302–319.
[7] Philp, M.; Shimmon, R.; Stojanovska, N.; Tahtouh, M.; Fu, S., “Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials”, Anal. Methods, 2013, 20, 5402-5410.
[8] Ali, E. M. A.; Edwards, H. G. M.; Scowen, I. J., “Rapid in situ detection of street samples of drugs of abuse on textile substrates using micro Raman spectroscopy”, Spectrochim. Acta A, 2011, 80, 2–7.
[9] Wen, Y.; Pei, H.; Wan, Y.; Su, Y.; Huang, Q.; Song, S.; Fan, C., “DNA nanostructur-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors”, Anal. Chem., 2011, 83, 7418–7423.
[10] Lachenmeier, K.; Musshoff, F.; Madea, B., “Determination of opiates and cocaine in hair using automated enzyme immunoassay screening methodologies followed by gas chromatographic–mass spectrometric (GC–MS) confirmation”, Forensic Sci. Int., 2006, 159, 189–199.
[11] Meyer, M. R.; Wilhelm, J.; Peters, F. T.; Maurer, H. H., “Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry”, Anal. Bioanal. Chem., 2010, 397, 1225– 1233.
[12] Choe, S.; Lee, J.; Choi, H.; Park, Y.; Lee, H.; Jo, J.; Park, Y.; Kim, E.; Pyo, J.; Lee, H. J., Kim, S., “Estimation of the synthetic routes of seized methamphetamines using GC–MS and multivariate analysis”, Forensic Sci. Int., 2016, 259, 85–94.
[13] Gergov, M.; Ojanpera, I.; Vuori, E., “Simultaneous screening for 238 drugs in blood by liquid chromatography–ionspray tandem mass spectrometry with multiple-reaction monitoring”, J. Chromatogr. B, 2003, 795, 41–53.
[14] Zhang, T.; Chen, X.; Yang, R.; Xu, Y., “Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry”, Forensic Sci. Int., 2015, 248, 10–14.
[15] Li, L.-P.; Feng, B.-S.; Yang, J.-W.; Chang, C.-L., Yu Bai; Liu H.-W., “Applications of ambient mass spectrometry in high-throughput screening”, Analyst, 2013, 138, 3097-3103.
[16] Cody, R. B.; Laramee, J. A.; Durst, H. D., “Versatile new ion source for the analysis of materials in open air under ambient conditions”, Anal. Chem., 2005, 77, 2297– 2302.
[17] LaPointe, J.; Musselman, B.; O’Neill, T.; Shepard, J.R.E., “Detection of bath salt synthetic cathinones and metabolites in urine via DART-MS and solid Phase”, J. Am. Soc. Mass Spectrom., 2015, 26, 159–165.
[18] Lesiak, A. D.; Musah, R. A.; Cody, R. B.; Domin, M. A.; Dane, A. J.; Shepard, J. R., “Direct analysis in real time mass spectrometry (DART-MS) of “bath salt” cathinone drug mixtures”, Analyst, 2013, 138, 3424–3432.
[19] Zhao, Y.; Lam, M.; Wu, D.; Mak, R., “Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation”, Rapid Commun. Mass Spectrom., 2008, 22, 3217–3224.
[20] Mess A.; Enthaler B.; Fischer, M.; Rapp, C.; Pruns, J. K.;
Vietzke, J.-P., “A novel sampling method for identification of endogenous
skin surface compounds by use of DART-MS and MALDI-MS”, Talanta, 2013,
103, 398–402.
[21] Vaclavik, L.; Rosmus, J.; Popping, B.; Hajslova, J., “Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry”, J. Chromatogr. A, 2010, 1217, 4204– 4211.
[22] Mattarozzi, M.; Milioli, M.; Cavalieri, C.; Bianchi, F.; Careri, M., “Rapid desorption electrospray ionization-high resolution mass spectrometry method for the analysis of melamine migration from melamine tableware”, Talanta, 2012, 101, 453–459.
[23] Tzinga, S.-H.; Ding, W.-H., “Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography–tandem mass spectrometry with furan chemical ionization”, J. Chromatogr.A., 2010, 1217, 6267–6273.
[24] Grange, A.H.; Sovocool, G. W., “Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry”, Rapid Commun. Mass Spectrom., 2011, 25, 1271–1281.
[25] Song, L.; Gibson, S. C.; Bhandari, D.; Cook, K. D.; Bartmess, J.E., “Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept”, Anal. Chem., 2009, 81, 10080–10088.
[26] Couper, F.; Logan, B., “Determination of gamma-hydroxybutyrate (GHB) in biological specimens by GC–MS”, J. Anal. Toxicol., 2000, 24, 1–7.
[27] Elian, A., “A novel method for GHB detection in urine and its application in drug facilitated sexual assaults”, Forensic Sci. Int., 2000, 109, 183–187.
[28] Meyers, J.E.; Almirall, J. R., “Analysis of gamma-hydroxybutyric acid (GHB) in spiked water and beverage samples using solid phase microextraction (SPME) on fiber derivatization/gas chromatography–mass spectrometry (GC/MS)”, J. Forensic Sci., 2005, 50, 1–6.
[29] K, Z. K.; Nikdaos, R.; Nikolaos, G.; Helen, T.-P.; Theodoridis, G. A., “A new method for the HPLC determination of gammahydroxybutyric acid (GHB) following derivatization with a coumarin analogue and fluorescence detection: application in the analysis of biological fluids”, Talanta, 2008, 75, 356–361.
[30] Chisum, W. J.; Turvey, B. “Evidence dynamics: Locard’s exchange principle & crime reconstruction”, J. B. Profiling, 2000, 1(1).
[31] Ghelardi, E.; Degno, I.; Colombini, M. P.; Mazurek, J.; Schilling, M.; Learner, T., “Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples”, Anal Bioanal Chem., 2015, 407, 1415-1431.
[32] Sparenga, S., “The Microscopic Identification of Organic Pigments:A New Look at an Old Technique”, McCrone Research Institute, Microscope, 2004, 52 (2), 63-70.
[33] Zi ˛eba-Palus, J.; Michalska, A; Weselucha-Birczyriska, A., "Characterisation of paint samples by infrared and Raman spectroscopy for criminalistic purposes”, J. Mol. Struct., 2011, 993, 134–141.
[34] van der Pal, K. J.; Sauzier, G.; Maric, M.; Bronswijk, W. V.; Pitts, J.; Lewis, S. W., “The effect of environmental degradation on the characterisation of automotive clear coats by infrared spectroscopy”, Talanta, 2016, 148, 715-720.
[35] Zi˛eba-Palus, J.; Milczarek, J. M.; Koscielniak, P., “Application of Infrared Spectroscopy and Pyrolysis-Gas Chromatography-Mass Spectrometry to the analysis of Automobile Paint Samples”, Chem. Anal., 2008, 53, 109-121.
[36] Zi˛eba-Palus J.; Zadora, G.; Milczarek, J. M.; Ko´scielniak, P. “Pyrolysis-gas chromatography/mass spectrometry analysis as a useful tool in forensic examination of automotive paint traces”, J. Chromatog. A, 2008, 1179, 41–46.
[37] Milczarek, J. M.; Zi˛eba-Palus, J., “Examination of spray paints on plasters by the use of pyrolysis-gaschromatography/mass spectrometry for forensic purposes”, J. Anal. Appl. Pyrolysis, 2009, 86, 252–259.
[38] Zi˛eba-Palus, J.; Was-Gulaba, J., “An investigation into the use of micro-Raman spectroscopy for the analysisof car paints and single textile fibres”, J. of Mol. Struct., 2011, 993, 127–133.
[39] Bieleman, J. H., Additives for Coatings, Wiley-VCH, 2000.
[40] Streitberger, H.-J.; Dossel, K.-F., Automotive Paints and Coatings, Wiley-VCH, 2008.
[41] 陳泰宏,包埋技術在微量汽車油漆鑑識上之刑事應用,中央警察大學鑑識科學
研究所碩士論文,2001。
[42] Thoonen, G.; Nys, B.; Haeghen, Y. V.; Roy, G. D.; Scheunders, P., “Automatic Forensic analysis of automotive paints using optical microscopy”, Forensic Sci. Int., 2016, 259, 210-220.
[43] Sisco, E.; Dake, J.; Bridge, C., “Screening for traces explosives by AccuTOFTM –DART: an in-depth validation study”, Forensic Sci. Int., 2013, 232, 160-168.
[44] DeRoo, C. S.; Armitage, R. A., “Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry”, Anal. Chem., 2011, 83, 6924–6928.
[45] Lesiak, A. D.; Cody, R. B.; Dane, A. J.; Musah, R. A., “Rapid detection by analysis in real time-mass spectrometry (DART-MS) of psychoactive plant drugs of abuse: the case of Mitragyna speciosa aka “Kratom”, Forensic Sci. Int., 2014, 242, 210-218.
[46] Srbek, J.; Klejdus, B.; Dousa, M.; Brichac, J.; Stasiak, P.; Reitmajer, J.; Novakova, L., “Direct analysis in real time-High resolution mass spectrometry as a valuable tool for the pharmaceutical drug development”, Talanta, 2014, 130, 518-526.
[47] Vaclavik, L.; Zachariasova, Hrbek, M.; V.; Hajslova, J., “Analysis of multiple mycotoxin in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry”, Talanta, 2010, 82 1950-1957.
[48] Hajslova, J.; Cajka, T.; Vaclavik, L., “Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis”, Trends in Anal. Chem., 2011, 30, 204-218.
[49] Haunschmidt, M.; Klampfl, C. W.; Buchbergera W.; Hertsens, R. “Rapid identification of stabilisers in polypropylene using time-of-flight mass spectrometry and DART as ion source”, Analyst, 2010, 135, 80–85.
[50] Song, L.; Gibson, S. C.; Bhandari, D.; Cook, K. D.; Bartmess, J. E., “Ionization mechanism of positive-ion direct analysis in real time: A transient microenvironment concept”, Anal. Chem., 2009, 81, 10080–10088.
[51] Christian D. R., Forensic Investigation of Clandestine Laboratories, CRC Press, 2004.
[52] NIOSH Method 9106, NIOSH Manual of Analytical Methods (5th edn), (draft). Available:http://www.cdc.gov/iosh/review/public/176/pdfs/NIOSH9106FINAL03. pdf.
[53] NIOSH Method 9109, NIOSH Manual of Analytical Methods,(5th edn.), (draft). Available:http://www.cdc.gov/ iosh/review/public/177/pdfs/NIOSH9109Final. pdf.
[54] Wickman, D. C.; Siso, M. C.; Reynolds, J. M.; Perkins, J. B., “Methamphetamine on cotton gauze wipes by LC/MS/SIM. Data Chem Laboratories”, Inc. NIOSH 9111, Issue 1, Backup Data Report, 2005. Available:http://www.cdc.gov/niosh/review/public/178/pdfs/9111Methamphetaminebackup Report12‐8‐05pcs. pdf.
[55] Cousins, D. R., Forensic Sci. Rev., 1989, 1(2), 141-161.
[56] ASTM E2225-02 Standard Guid for Forensic Examination of Fabrics and
Cordage, 2010, 887-889.
[57] Rothenbacher, T.; Schwack, W., “Rapid and nondestructive analysis of phthalic acid esters in toys made of poly(vinyl chloride) by direct analysis in real time single-quadrupole mass spectrometry”, Rapid Commun. Mass Spectrom., 2009, 23, 2829–2835.
[58] ASTM E1610-02 Standard Guid for Forensic Paint Comparison, 2010, 526-529.
[59] Miyaguchi, Hajime; Inoue, Hiroyuki, “Determination of amphetamine-type
stimulants, cocaine and ketamine inhuman hair by liquid chromatography/linear
ion trap–Orbitrap hybrid massspectrometry”, Analyst, 2011, 136, 3503–3511.
[60] Abdullah, A. F. L.; Miskelly, G. M., “Recoveries of trace pseudoephedrine and methamphetamine residues from impermeable household surfaces: Implications for sampling methods used during drug remediation of clandestine methamphetamine laboratories”, Talanta, 2010, 81, 455–461.
[61] Sua, A.-K.; Liu, J.-T.; Lin, C.-H., “Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry”, Talanta, 2005, 67, 718–724.
[62] Hu, Q.; Talaty, N.; Noll, R. J.; Cooks, R. G., “Desorption electrospray
ionization using an Orbitrap mass spectrometer: Exact mass measurements on
drugs and peptides”, Rapid Commun. Mass Spectrom., 2006, 20, 3403–3408.
[63] Society of Hair Testing, “Recommendations for hair testing in forensic cases”, Forensic Sci. Int., 2004, 145, 83–84.
[64] Meng, L.; Wang, B.; Luo, F.; Shen, G.; Wang, Z.; Guo, M., “Application of dispersive liquid–liquid microextraction and CE with UV detection for the chiral separation and determination of the multiple illicit drugs on forensic samples”, Forensic Sci. Int., 2011, 209, 42–47.
[65] Qizhi Hu; NariTalaty; Robert J. Noll; R. Graham Cooks, “Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides”, Rapid Commun. Mass Spectrom., 2006, 20(22), 3403–3408.
[66] Oakley, L. H.; Fabian, D. M.; Mayhew, H. E.; Svoboda, S. A.; Wustholz, K. L., “Pretreatment Strategies for SERS Analysis of indigo and Prussian blue in aged painted surfaces”, Anal. Chem., 2012, 84, 8006-8012.
[67] Miyaguchi, H.; Inoue, H., “Determination of amphetamine-type
stimulants, cocaine and ketamine in human hair by liquid chromatography/linear
ion trap–Orbitrap hybrid mass spectrometry”, Analyst, 2011, 136, 3503–3511.
[68] Sloggett, R.; Kyi, C.; Tse, N.; Tobin, M. J.; Puskar, L.; Best, S. P., “Microanalysis of artworks: IR microspectroscopy of paint cross-sections”, Vib. Spectrosc., 2010, 53, 77–82.
[69] Gorkum, R. V.; Bouwman, E., Alkyd paint and paint driers, Coord. Chem. Rev., 2005.
[70] Duce, C.; Porta, V. D.; Tine, M. R.; Spepi, A.; Ghezzi, L.; Colombini, M. P., “Emilia Bramanti, FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas”, Spectrochim. Acta, Part A, 2014, 130, 214-221.
[71] Caddy, B., Forensic Examination of Glass and Paint: Analysis and interpretation,
Taylor & Francis, New York, 2001.
[72] Maric, M.; Bronswijk, W. v.; Lewis, S. W.; Pitts, K.; Martin, D. E., “Characterisation of chemical component migration in automotive paint by synchrotron infrared imaging”, Forensic Sci. Int., 2013, 228, 165-169.
[73] Lavine, J. K.; Mirjankar, N.; Ryland, S.; Sandercock, M., “Wavelets and genetic algorithms applied to search prefilters for spectral library matching in forensics”, Talanta, 2011, 87, 46-52.
[74] Anderman, T., “Selected cases of paint coating examination”, Problems Forensic Sci., 2001, XLVI, 335–344.
[75] Trzcinska, B.; Kowalski, R.; Zieba-Palus, J., “Comparison of pigment content of paint samples using spectrometric methods”, Spectrochim. Acta, Part A, 2014, 130, 534-538.
[76] Lv, J.; Zhang, W.; Liu, S.; Chen, R.; Feng, J.; Zhou, S.; Liu, Y., “Analysis of 52 automotive coating samples for forensic purposes with Fourier transform infrared spectroscopy (FTIR) and Raman microscopy”, Environ. Forensics, 2016, 17, 59-67.
[77] Shi, R.; Cai, Y.; Lv, J.; Zhao, M.; Liu, Y.; Wang, Z.; Feng, J., “Discriminating paints with different clay additives in forensic analysis of automotive coatings by FT-IR and Raman spectroscopy”, Spectroscopy, 2012, 27, 36-40.
[78] Zi˛eba-Palus, J.; Borusiewicz, R.; Kunicki, M., “PRAXIS-combined u-Raman and u-XRF spectrometers in the examination of forensic samples”, Forensic Sci. Int., 2008, 175 1–10.
[79] Jochem, G.; Lehnert, R.J., “On the potential of Raman microscopy for the forensic analysis of coloured textile fibres”, Sci. Justice, 2002, 42, 215–221.
[80] Thomas, J.; Buzzini, P.; Massonnet, G.; Reedy, B.; Roux, C., “Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1. Investigation of the effects of varying laser wavelength”, Forensic Sci. Int., 2005, 152, 189–197.
[81] de Gelder, J.; Vandenabeele, P.; Govaert, F.; Moens, L., “Forensic analysis of automotive paints by Raman spectroscopy”, Raman Spectrosc., 2005, 36, 1059–1067.
[82] Germinario, G.; van der Werf, I. D.; Sabbatini, L., “Chemical characterization of spray paints by a multi-analytical (Py/GC-MS, FTIR, u-Raman) approach”, Microchemical J., 2016, 124, 929-939.
[83] Stowe, A. C.; Smyrl, N., “Raman spectroscopy of lithium hydride corrosion: selection of appropriate excitation wavelength to minimize fluorescence”, Vib. Spectrosc., 2012, 60, 133-136.
[84] Massonnet, G.; Stoecklein, W., “Identification of organic pigments in coatings: applications to red automotive topcoats Part III: Raman spectroscopy (NIR FT-Raman)”, Sci. Justice, 1999, 39, 181-187.
[85] Lindsay, H; Oakley, D. M.; Fabin, H. E., “Nayhew, Shelley A. Svoboda, Kristin L. Wustholz, Pretrement strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces”, Anal. Chem., 2012, 84, 8006–8012.
[86] Cesaratto, A.; Leona, M.; Lombardi, J. R.; Daniela C.; Nevin, A.; Londero, P., “Detection of organic colorants in historical painting layers using UV laser ablation Surface-Enhanced Raman Microspectroscopy”, Angew. Chem. Int. Ed., 2014, 53, 14373-14377.
[87] MacDonald, A. M.; Wyeth, P., “On the use of photobleaching to reduce fluorescence background in Raman spectroscopy to improve the reliability of pigment identification on painted textiles”, J. Raman Spectrosc., 2006, 37, 830-835.
[88] Zięba-Palus, J.; Michalska, A., “Photobleaching as a useful technique in reducing of fluorescence in Raman spectra of blue automobile paint samples”, Vib. Spectrosc., 2014, 74, 6–12.
[89] Likar, M. D.; Cheng, G.; Mahajan, N.; Zhang, Z., “Rapid identification and absence of drug tests for AG-013736 in 1 mg Axitinib tablets by ion mobility spectrometry and DARTTM mass spectrometry”, Pharmaceut. Biomed., 2011, 55, 569-573.
[90] Saferstein, R., Foresic Science Handbook Volume I-II, 1982.
[91] Cakić, S. M.; Bošković, L. B., “FTIR analysis and the effects of alkyd/ melamine resin ratio on the properties of the coatings”, Hemijska Industrija, 2009, 63(6), 637-643.
[92] Gan, S.-N.; Tan, B.-Y., “FTIR studies of the curing reactions of palm oil alkyd-melamine enamels”, J. of Appl. Polym. Sci., 2001, 80, 2309-2315.
[93] Koyama, S.; Morishima, M.; Miyauhi, Y.; Ishizawa, H., “Non-destructive identification and mixture ratio analysis of cotton-polyester blended textile roducts by IR spectroscopy”, TLIST, 2013, 2(4), 153-160.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top