|
1. Buff, H., Ueber das electrische Verhalten des Aluminiums. Justus Liebigs Annalen der Chemie 1857, 102 (3), 265-284. 2. Takahashi, H.; Saito, Y.; Nagayama, M., Effects of Electrolyte Anions on The Formation of Barrier Type Oxide Films on Aluminum. Journal of the Metal Finishing Society of Japan 1982, 33 (5), 225-231. 3. Thompson, G. E., Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films 1997, 297 (1-2), 192-201. 4. Nishinaga, O.; Kikuchi, T.; Natsui, S.; Suzuki, R. O., Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci Rep 2013, 3. 5. Kape, J. M., Unusual anodizing processes and their practical significance. Electroplating and Metal Finish 1961, 45, 34-42. 6. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P., The Formation of controlled-porosity membranes from anodically oxidized aluminum. Nature 1989, 337 (6203), 147-149. 7. Thompson, G. E.; Wood, G. C., Porous anodic film formation on aluminum. Nature 1981, 290 (5803), 230-232. 8. Kape, J. M., The use of malonic acid as an anodising electrolyte. Metallugia 1959, 60, 181-191. 9. Martin, J.; Maiz, J.; Sacristan, J.; Mijangos, C., Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications. Polymer 2012, 53 (6), 1149-1166. 10. Lee, W.; Park, S. J., Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114 (15), 7487-7556. 11. Jani, A. M. M.; Losic, D.; Voelcker, N. H., Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58 (5), 636-704. 12. Chen, J. T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M. F.; Russell, T. P., Amorphous carbon nanotubes with tunable properties via template wetting. Adv. Funct. Mater. 2006, 16 (11), 1476-1480. 13. Cepak, V. M.; Martin, C. R., Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mat. 1999, 11 (5), 1363-1367. 14. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U., Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296 (5575), 1997-1997. 15. Pethrick, R. A., Introduction to microlithography (2nd edition). Polymer International 1995, 37 (3), 231-231. 16. Tirrell, M.; Kokkoli, E.; Biesalski, M., The role of surface science in bioengineered materials. Surf. Sci. 2002, 500 (1-3), 61-83. 17. Tsai, C.-C., Instability in polymer thin films coated in the nanopores of anodic aluminum oxide templates. Ph. D. Thesis, National Chiao Tung University. 2015. 18. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1946, 1 (6), 513-538. 19. Sagiv, J., Organized monolayers by adsorption. 1. formation and structure of oleophobic mixed monolayers on solid-surfaces. J. Am. Chem. Soc. 1980, 102 (1), 92-98. 20. Sagiv, J., Organized monolayers by adsorption. 2. molecular-orientation in mixed dye monolayers built on anisotropic polymeric surfaces. Isr. J. Chem. 1979, 18 (3-4), 339-345. 21. Sagiv, J., Organized monolayers by adsorption. 3. irreversible adsorption and memory effects in skeletonized silane monolayers. Isr. J. Chem. 1979, 18 (3-4), 346-353. 22. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 1983, 105 (13), 4481-4483. 23. Hui, C. M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M. R.; Matyjaszewski, K., Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mat. 2014, 26 (1), 745-762. 24. Pujari, S. P.; Scheres, L.; Marcelis, A. T. M.; Zuilhof, H., Covalent surface modification of oxide surfaces. Angew. Chem.-Int. Edit. 2014, 53 (25), 6322-6356. 25. Milner, S. T.; Witten, T. A.; Cates, M. E., Theory of the grafted polymer brush. Macromolecules 1988, 21 (8), 2610-2619. 26. Milner, S. T., Polymer brushes. Science 1991, 251 (4996), 905-914. 27. Ohnishi, M.; Kozuka, Y.; Ye, Q. L.; Yoshikawa, H.; Awaga, K.; Matsuno, R.; Kobayashi, M.; Takahara, A.; Yokoyama, T.; Bandow, S.; Iijima, S., Phase selective preparations and surface modifications of spherical hollow nanomagnets. J. Mater. Chem. 2006, 16 (31), 3215-3220. 28. Reiter, G.; Auroy, P.; Auvray, L., Instabilities of thin polymer films on layers of chemically identical grafted molecules. Macromolecules 1996, 29 (6), 2150-2157. 29. Halperin, A.; Tirrell, M.; Lodge, T. P., Tethered chains in polymer microstructures. Adv. Polym. Sci. 1992, 100, 31-71. 30. Myungwoong, K.; Schmitt, S. K.; Choi, J. W.; Krutty, J. D.; Gopalan, P., From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers 2015, 7 (7), 1346-1378. 31. Wang, J. S.; Matyjaszewski, K., Controlled living radical polymerization-atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614-5615. 32. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995, 28 (5), 1721-1723. 33. Patten, T. E.; Xia, J. H.; Abernathy, T.; Matyjaszewski, K., Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996, 272 (5263), 866-868. 34. Cui, Y.; Tao, C.; Zheng, S. P.; He, Q.; Ai, S. F.; Li, J. B., Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane. Macromol. Rapid Commun. 2005, 26 (19), 1552-1556. 35. Cui, Y.; Tao, C.; Tian, Y.; He, Q.; Li, J. B., Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 2006, 22 (19), 8205-8208. 36. Li, P. F.; Xie, R.; Jiang, J. C.; Meng, T.; Yang, M.; Ju, X. J.; Yang, L. H.; Chu, L. Y., Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J. Membr. Sci. 2009, 337 (1-2), 310-317. 37. Szuwarzynski, M.; Zaraska, L.; Sulka, G. D.; Zapotoczny, S., Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mat. 2013, 25 (3), 514-520. 38. Gao, L.; Zhu, W.; Zhang, K.; Chen, Y. M., Tubular polymer nanoobjects with a crosslinked shell and inward-grafted polymer brushes. Macromol. Mater. Eng. 2012, 297 (7), 639-644. 39. Liu, J. X.; Ma, S. H.; Wei, Q. B.; Jia, L.; Yu, B.; Wang, D. A.; Zhou, F., Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis. Nanoscale 2013, 5 (23), 11894-11901. 40. Ma, S. H.; Liu, J. X.; Ye, Q.; Wang, D. A.; Lianga, Y. M.; Zhou, F., A general approach for construction of asymmetric modification membranes for gated flow nanochannels. J. Mater. Chem. A 2014, 2 (23), 8804-8814. 41. Heeger, A. J., Semiconducting and metallic polymers: The fourth generation of polymeric materials. MRS Bulletin 2012, 26 (11), 900-904. 42. Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers-halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc.-Chem. Commun. 1977, (16), 578-580. 43. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39 (17), 1098-1101. 44. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B., Light-emitting-diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541. 45. Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G., Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43 (10), 3259-3302. 46. Kong, F.; Wu, X. L.; Huang, G. S.; Yang, Y. M.; Yuan, R. K.; Yang, C. Z.; Chu, P. K.; Siu, G. G., Optical emission from nano-poly 2-methoxy-5-(2 '-ethyl-hexyloxy)-p-phenylene vinylene arrays. J. Appl. Phys. 2005, 98 (7). 47. Kong, F.; Huang, G. S.; Yang, Y. M.; Yang, C. Z.; Bao, X. M.; Yuan, R. K., Conformation and luminescence characteristics of nanopoly 2-metoxy-5-(2 '-ethyl-hexyloxy)-p-phenylene vinylene in two-dimensional arrays. J. Polym. Sci. Pt. B-Polym. Phys. 2006, 44 (21), 3037-3041. 48. Kong, F.; Yang, Y. M.; Zhang, X. Q.; Lin, B. P.; Qi, Z. J.; Qiu, T., Effect of absorption to nanopore on optical properties of conjugated polymers in porous anode alumina. J. Appl. Phys. 2011, 109 (4). 49. O'Carroll, D.; Lieberwirth, I.; Redmond, G., Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol. 2007, 2 (3), 180-184. 50. O'Carroll, D.; Lieberwirth, I.; Redmond, G., Melt-processed polyfluorene nanowires as active waveguides. Small 2007, 3 (7), 1178-1183. 51. O'Carroll, D.; Irwin, J.; Tanner, D. A.; Redmond, G., Polyfluorene nanowires with pronounced axial texturing prepared by melt-assisted template wetting. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2008, 147 (2-3), 298-302. 52. O'Carroll, D.; Redmond, G., Polyfluorene nanowire active waveguides as sub-wavelength polarized light sources. Physica E 2008, 40 (7), 2468-2473. 53. O'Carroll, D.; Iacopino, D.; O'Riordan, A.; Lovera, P.; O'Connor, E.; O'Brien, G. A.; Redmond, G., Poly(9,9-dioctylfluorene) nanowires with pronounced beta-phase morphology: Synthesis, characterization, and optical properties. Adv. Mater. 2008, 20 (1), 42-48. 54. O'Carroll, D.; Redmond, G., Highly anisotropic luminescence from poly(9,9-dioctylfluorene) nanowires doped with orientationally ordered beta-phase polymer chains. Chem. Mat. 2008, 20 (20), 6501-6508. 55. Moynihan, S.; Lacopino, D.; O'Carroll, D.; Lovera, P.; Redmond, G., Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mat. 2008, 20 (3), 996-1003. 56. Iacopino, D.; Lovera, P.; O'Riordan, A.; Redmond, G., Highly polarized luminescence from beta-phase-rich poly(9,9-dioctylfluorene) nanofibers. J. Phys. Chem. A 2014, 118 (29), 5437-5442. 57. Iacopino, D.; Redmond, G., Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers. Nanotechnology 2014, 25 (43). 58. Aguilar, M. R.; Román, J. S., Smart polymers and their applications. Elsevier 2014, 15-21. 59. Zhuang, J.; Gordon, M. R.; Ventura, J.; Li, L.; Thayumanavan, S., Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013, 42 (17), 7421-7435. 60. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268 (5216), 1466-1468. 61. Su, Z. X.; Buehl, M.; Zhou, W. Z., Dissociation of water during formation of anodic aluminum oxide. J. Am. Chem. Soc. 2009, 131 (24), 8697-8702. 62. Jessensky, O.; Muller, F.; Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72 (10), 1173-1175. 63. Thamida, S. K.; Chang, H.-C., Nanoscale pore formation dynamics during aluminum anodization. Chaos 2002, 12 (1), 240-251. 64. Güntherschulze, A.; Betz, H., Die bewegung der ionengitter von isolatoren bei extremen elektrischen feldstärken. Z. Physik 1934, 92 (5-6), 367-374. 65. Ghicov, A.; Schmuki, P., Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, (20), 2791-2808. 66. Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U., Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84 (11), 6023-6026. 67. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5 (9), 741-747. 68. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 1995, 268 (5216), 1466-1468. 69. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T., Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71 (19), 2770-2772. 70. Liu, C. Y.; Datta, A.; Wang, Y. L., Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001, 78 (1), 120-122. 71. Lee, M. H.; Lim, N.; Ruebusch, D. J.; Jamshidi, A.; Kapadia, R.; Lee, R.; Seok, T. J.; Takei, K.; Cho, K. Y.; Fan, Z. Y.; Jang, H.; Wu, M.; Cho, G.; Javey, A., Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 2011, 11 (8), 3425-3430. 72. Huang, Y.-C., Fabrication of anodic aluminum oxide templates and the rayleigh instability of polymer nanofibers. Master Thesis, National Chiao Tung University. 2012. 73. Byun, J.; Lee, J. I.; Kwon, S.; Jeon, G.; Kim, J. K., Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods. Adv. Mater. 2010, 22 (18), 2028-2032. 74. Chu, C. W.; Huang, Y. C.; Tsai, C. C.; Chen, J. T., Wetting in nanopores of cylindrical anodic aluminum oxide templates: Production of gradient polymer nanorod arrays on large-area curved surfaces. Eur. Polym. J. 2015, 63, 141-148. 75. Yin, A. J.; Guico, R. S.; Xu, J., Fabrication of anodic aluminium oxide templates on curved surfaces. Nanotechnology 2007, 18 (3). 76. Sanz, R.; Hernandez-Velez, M.; Pirota, K. R.; Baldonedo, J. L.; Vazquez, M., Fabrication and magnetic functionatization of cylindrical porous anodic alumina. Small 2007, 3 (3), 434-437. 77. Sun, F. Q.; Cai, W. P.; Li, Y.; Jia, L. C.; Lu, F., Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 2005, 17 (23), 2872. 78. Khan, A.; Wang, Z. B.; Sheikh, M. A.; Whitehead, D. J.; Li, L., Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays. J. Phys. D-Appl. Phys. 2010, 43 (30). 79. Chen, J. T.; Chen, W. L.; Fan, P. W., Hierarchical structures by wetting porous templates with electrospun polymer fibers. ACS Macro Lett. 2012, 1 (1), 41-46. 80. Yin, S.; Ruffin, P.; Brantley, C.; Edwards, E.; Luo, C., Fabrication of nanostructures on curved surfaces. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Vii, Yin, S.; Guo, R., Eds. Spie-Int Soc Optical Engineering: Bellingham, 2013; Vol. 8847. 81. de Gennes, P. G.; Brochard-Wyart, F.; Quere, D., Capillarity and wetting phenomena. Springer 2006. 82. Tanaka, T.; Morigami, M.; Atoda, N., Mechanism of resist pattern collapse during development process. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1993, 32 (12B), 6059-6064. 83. Chen, G.; Soper, S. A.; McCarley, R. L., Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles. Langmuir 2007, 23 (23), 11777-11781. 84. Chu, C. W.; Jeng, K. S.; Chi, M. H.; Tsai, C. C.; Cheng, M. H.; Chen, J. T., Confinement effects on the optical properties and chain conformations of poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) nanotubes. Macromol. Chem. Phys. 2016, 217 (18), 2074-2080. 85. Donley, C. L.; Zaumseil, J.; Andreasen, J. W.; Nielsen, M. M.; Sirringhaus, H.; Friend, R. H.; Kim, J. S., Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2005, 127 (37), 12890-12899. 86. Kim, J. S.; Ho, P. K. H.; Murphy, C. E.; Friend, R. H., Phase separation in polyfluorene-based conjugated polymer blends: Lateral and vertical analysis of blend spin-cast thin films. Macromolecules 2004, 37 (8), 2861-2871. 87. Banach, M. J.; Friend, R. H.; Sirringhaus, H., Influence of the molecular weight on the thermotropic alignment of thin liquid crystalline polyfluorene copolymer films. Macromolecules 2003, 36 (8), 2838-2844. 88. Kim, J. S.; Ho, P. K. H.; Murphy, C. E.; Baynes, N.; Friend, R. H., Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv. Mater. 2002, 14 (3), 206-209. 89. Ariu, M.; Lidzey, D. G.; Bradley, D. D. C., Influence of film morphology on the vibrational spectra of dioctyl substituted polyfluorene (PFO). Synth. Met. 2000, 111, 607-610. 90. Song, G.; She, X.; Fu, Z.; Li, J., Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques. Journal of Materials Research 2004, 19 (11), 3324-3328. 91. Zhao, Y. J.; Zhao, Q. S.; Lu, L. J.; Ye, S. Y., Fabrication of polyurethane(PU) nanotubes with array by wetting anodic aluminium oxide template with polymer solution and melt. Materials Research Innovations 2015, 19 (5), 345-348. 92. Lee, C.-W., The morphology of polymer materials controlled by the template method. Master Thesis, National Chiao Tung University. 2012. 93. Chu, C. W.; Higaki, Y.; Cheng, C. H.; Cheng, M. H.; Chang, C. W.; Chen, J. T.; Takahara, A., Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polym. Chem. 2017, 8 (15), 2309-2316. 94. Higaki, Y.; Nishida, J.; Takenaka, A.; Yoshimatsu, R.; Kobayashi, M.; Takahara, A., Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 2015, 47 (12), 811-818. 95. Kato, T.; Takahashi, A., Excluded volume effects of sulphobetaine polymers. Berichte der Bunsengesellschaft für physikalische Chemie 1996, 100 (6), 784-787. 96. Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas, J. J.; Soni, L.; Handwerker, B.; Garner, R. T., Phase-behavior and solution properties of sulfobetaine polymers. Polymer 1986, 27 (11), 1734-1742. 97. Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K., Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas. Macromolecules 2008, 41 (22), 8584-8591. 98. Genzer, J., In silico polymerization: Computer simulation of controlled radical polymerization in bulk and on flat surfaces. Macromolecules 2006, 39 (20), 7157-7169. 99. Gorman, C. B.; Petrie, R. J.; Genzer, J., Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 2008, 41 (13), 4856-4865. 100. Pasetto, P.; Blas, H.; Audouin, F.; Boissière, C.; Sanchez, C.; Save, M.; Charleux, B., Mechanistic insight into surface-initiated polymerization of methyl methacrylate and styrene via atrp from ordered mesoporous silica particles. Macromolecules 2009, 42 (16), 5983-5995. 101. Terayama, Y.; Kikuchi, M.; Kobayashi, M.; Takahara, A., Well-defined poly(sulfobetaine) brushes prepared by surface-initiated atrp using a fluoroalcohol and ionic liquids as the solvents. Macromolecules 2011, 44 (1), 104-111. 102. Murakami, D.; Jinnai, H.; Takahara, A., Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30 (8), 2061-2067. 103. Lalani, R.; Liu, L. Y., Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer 2011, 52 (23), 5344-5354. 104. Marutani, E.; Yamamoto, S.; Ninjbadgar, T.; Tsujii, Y.; Fukuda, T.; Takano, M., Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 2004, 45 (7), 2231-2235. 105. Turgman-Cohen, S.; Genzer, J., Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates. J. Am. Chem. Soc. 2011, 133 (44), 17567-17569. 106. Turgman-Cohen, S.; Genzer, J., Computer simulation of concurrent bulk- and surface-initiated living polymerization. Macromolecules 2012, 45 (4), 2128-2137. 107. Rouquerol, F.; Rouquerol, J.; Sing, K., Chapter 1 - Introduction. In Adsorption by powders and porous solids, Academic Press: London, 1999; pp 1-26. 108. Larkin, P., Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier 2011, 128-130. 109. Liu, S.; Tang, S.; Zhou, H.; Fu, C.; Huang, Z.; Liu, H.; Kuang, Y., Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters. Journal of Solid State Electrochemistry 2013, 17 (7), 1931-1938. 110. Nagaura, T.; Takeuchi, F.; Inoue, S., Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochimica Acta 2008, 53 (5), 2109-2114. 111. Lee, W.; Schwirn, K.; Steinhart, M.; Pippel, E.; Scholz, R.; Gosele, U., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 2008, 3 (4), 234-239. 112. Mutalib Md Jani, A.; Anglin, E. J.; McInnes, S. J. P.; Losic, D.; Shapter, J. G.; Voelcker, N. H., Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem. Commun. 2009, (21), 3062-3064. 113. Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T., Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 2001, 13 (3), 189-192. 114. Lee, C. W.; Wei, T. H.; Chang, C. W.; Chen, J. T., Effect of Nonsolvent on the Formation of Polymer Nanomaterials in the Nanopores of Anodic Aluminum Oxide Templates. Macromol. Rapid Commun. 2012, 33 (16), 1381-1387.
|