(3.237.97.64) 您好!臺灣時間:2021/03/04 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱建威
研究生(外文):Chu, Chien-Wei
論文名稱:多孔性陽極氧化鋁模板之製備及功能性高分子奈米材料於受限條件下之物性分析
論文名稱(外文):Fabrication of Porous Anodic Aluminum Oxide Templates and Property Analysis of Confined Functional Polymer Nanomaterials
指導教授:陳俊太
指導教授(外文):Chen, Jiun-Tai
口試委員:許千樹陳俊太簡紋濱李博仁周鶴修陳祺
口試委員(外文):Hsu, Chain-shuChen, Jiun-TaiJian, Wen-BinLi, Bor-RanChou, Ho-HsiuChen, Chi
口試日期:2017-07-31
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:161
中文關鍵詞:陽極氧化鋁共軛高分子奈米材料高分子刷響應性
外文關鍵詞:anodic aluminum oxideconjugated polymernanomaterialpolymer brushresponsive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,高分子奈米材料的研究因為其具有有別於塊材的特殊性質而受到了很多地關注。為了能夠更深入地了解受限的功能性高分子材料的性質,我們需要一套簡單卻有系統的方法去製備高分子奈米材料並了解其在受限效應下的性質變化。
在本論文中,我們首先利用二次陽極氧化法建立了我們實驗室自己製備陽極氧化鋁(Anodic aluminum oxide, AAO)模板的系統(第三章)。接著,利用相似的方法製備了圓柱型的AAO模板,並用之在曲面上製備具高度梯度的高分子奈米柱陣列(第四章)。此外,我們也將發光高分子(Light-emitting polymer)導入市售與自製的AAO模板孔洞中製備出發光高分子奈米管,並利用儀器分析受限條件對其光學性質與高分子鏈排列的影響(第五章)。最後,我們利用表面起始原子轉移自由基聚合(Surface-initiated atom transfer radical polymerization, SI-ATRP)於AAO模板孔洞中接枝響應性高分子刷(Responsive polymer brush),將AAO模板表面進行修飾,並利用光譜與熱分析儀研究高分子鏈在孔洞中生長的受限效應(第六章)。
Polymer nanomaterials recently have attracted great interest because of their unique properties compare to the bulk materials. To have a deeper understanding of the properties of confined functional polymer nanomaterials, a simple route to fabricate polymer nanostructures is desired.
In this work, we build up a well-controlled system in our laboratory to fabricate AAO templates using the second anodization method (Chapter 3). Subsequently, cylindrical anodic aluminum oxide (c-AAO) templates can be synthesized using similar anodizing process on the Al wires and the polymer nanorod arrays on the curved surfaces can be obtained by infiltrating polymers into the nanopores of the c-AAO templates (Chapter 4). Furthermore, light-emitting polymer nanotubes are also fabricated by infiltrating the light-emitting polymer into the nanopores of the AAO templates. The optical properties and polymer chain packings of confined polymer nanotubes are also characterized (Chapter 5). Finally, stimuli-responsive polymer brushes are grafted from the surfaces of the AAO templates by surface-initiated atom transfer radical polymerization (SI-ATRP). The confinement effect on polymer chain growth in the nanopores of AAO membranes is investigated (Chapter 6).
摘要 iv
ABSTRACT v
謝誌 vi
目錄 xii
圖目錄 xviii
表目錄 xxv
第一章 緒論 1
1.1 前言 1
1.2 研究背景與論文概要 2
1.3 陽極氧化鋁簡介 3
1.4 結合高分子材料與AAO模板的方法 5
1.4.1 將高分子導入AAO模板孔洞的方法 5
1.4.1.1 溶液潤濕法 6
1.4.1.2 熔化潤濕法 8
1.4.2 利用高分子材料修飾AAO模板表面 8
1.4.2.1 表面修飾簡介 8
1.4.2.2 表面修飾的原理與分類 9
1.4.2.3 自組裝單層膜 11
1.4.2.4 高分子表面修飾 (高分子刷) 12
1.4.3 表面起使原子轉移自由基聚合(SI-ATRP) 14
1.4.3.1 活性自由基聚合 14
1.4.3.2 ATRP的反應機制 15
1.4.4 利用SI-ATRP於AAO模板上接枝功能性高分子 16
1.4.4.1 於AAO模板上接枝溫度響應性高分子 16
1.4.4.2 於AAO模板上接枝其他功能性高分子 19
1.5 功能性高分子簡介 21
1.5.1 發光高分子 21
1.5.1.1 發光高分子簡介 21
1.5.1.2 發光高分子的發光機制—螢光 22
1.5.2 利用AAO模板製作發光高分子奈米材料的研究 23
1.5.2.1 利用AAO模板製作MEH-PPV奈米結構 24
1.5.2.2 利用AAO模板製作PFO奈米結構 24
1.5.3 刺激響應性高分子 26
1.5.3.1 刺激響應性高分子簡介 26
1.5.3.2 熱響應性高分子 26
1.5.3.3 光響應性高分子 28
第二章 實驗器材與儀器原理 29
2.1 實驗器材與儀器列表 29
2.1.1 實驗儀器 29
2.1.2 鑑定儀器 30
2.1.2.1 顯微鏡 30
2.1.2.2 光譜儀 30
2.1.2.3 其他儀器 31
2.2 鑑定儀器原理 32
2.2.1 顯微鏡原理簡介 32
2.2.1.1 掃描式電子顯微鏡 32
2.2.1.2 穿透式電子顯微鏡 33
2.2.1.3 原子力顯微鏡 33
2.2.1.4 雷射掃描共軛焦顯微鏡 34
2.2.2 光譜儀原理簡介 35
2.2.2.1 紫外光-可見光光譜儀 35
2.2.2.2 螢光光譜儀 35
2.2.2.3 核磁共振光譜 35
2.2.2.4 X射線光電子光譜 36
2.2.2.5 雷射拉曼顯微光譜 36
2.2.2.6 能量色散X射線光譜 37
2.2.3 其他儀器原理簡介 37
2.2.3.1 廣角X光散射 37
2.2.3.2 比表面積分析儀 38
2.2.3.3 熱重分析儀 38
2.2.3.4 粒徑篩析層析儀 38
2.2.3.5 接觸角量測儀 39
第三章 陽極氧化鋁模板的製備 40
3.1 文獻回顧 40
3.1.1 形成陽極氧化鋁的化學反應 40
3.1.2 孔洞型陽極氧化鋁模板的孔洞成長機制 41
3.1.2.1 氧化鋁阻障層的形成 42
3.1.2.2 孔洞的形成(Pore initiation) 43
3.1.2.3 孔洞的穩定成長(Steady-state pore growth) 44
3.1.3 電解液與陽極氧化電壓的影響 45
3.1.4 增進孔洞排列規則度的方法 47
3.1.4.1 二次陽極氧化法 47
3.1.4.2 奈米壓印法 48
3.1.4.3 聚焦離子束微影法 49
3.1.5 孔洞型AAO模板的優點 49
3.2 研究目的與動機 50
3.3 實驗方法與設備 50
3.3.1 實驗藥品 50
3.3.2 實驗步驟 52
3.3.2.1 前處理(Pretreatment, PR) 52
3.3.2.2 電化學拋光(Electropolishing, EP) 53
3.3.2.3 第一次陽極氧化處理(First anodization, AN1) 53
3.3.2.4 化學蝕刻(Chemical etching, CE) 54
3.3.2.5 第二次陽極氧化處理(Second anodization, AN2) 55
3.3.2.6 擴孔(Pore widening, PW) 55
3.3.2.7 脫模(Aluminum removal)及開孔(Pore opening) 55
3.4 結果與討論 56
3.4.1 形貌鑑定 56
3.4.1.1 電化學拋光 56
3.4.1.2 第一次陽極氧化處理 57
3.4.1.3 化學蝕刻 57
3.4.1.4 第二次陽極氧化處理 58
3.4.1.5 脫模及開孔 59
3.4.2 參數調控 61
3.4.2.1 擴孔時間與AAO模板孔徑大小的關係 61
3.4.2.2 二次陽極氧化時間與AAO模板孔洞長度的關係 62
3.5 結論 64
第四章 圓柱型陽極氧化鋁模板的製備及於在曲面上製備具高度梯度高分子奈米柱陣列的應用 65
4.1 文獻回顧 65
4.1.1 曲面鋁材上製備AAO模板 65
4.1.1.1 孔洞停止生長 66
4.1.1.2 空間/體積引發的孔洞分支 67
4.1.1.3 孔洞彎曲 68
4.1.2 鋁線基材上製備AAO模板 68
4.1.3 曲面上製備微奈米結構的方法 69
4.1.3.1 利用漂浮法將高分子微球單層膜轉移到曲面基板上 69
4.1.3.2 利用黏性可撓膜將氧化矽微球單層膜轉移到曲面基板上 70
4.1.3.3 利用AAO模板在高分子纖維上製作微奈米多階層結構 71
4.2 研究目的與動機 72
4.3 實驗方法與設備 73
4.3.1 實驗藥品 73
4.3.2 實驗步驟 74
4.3.2.1 圓柱型陽極氧化鋁(c-AAO)模板的製備 74
4.3.2.2 於曲面膜上製備具不同高度梯度的PMMA奈米柱陣列 75
4.4 結果與討論 76
4.4.1 c-AAO模板之形貌鑑定 76
4.4.2 曲面膜上具有不同高度梯度之PMMA奈米柱陣列的形貌鑑定 77
4.4.3 影響奈米柱長度與聚集程度的因素探討 79
4.4.4 PMMA膜凹槽曲率之控制 81
4.4.5 c-AAO模板其他可能的應用 82
4.5 結論 83
第五章 利用陽極氧化鋁模板製作F8BT奈米管並研究奈米受限對其構形與光學性質的影響 84
5.1 文獻回顧 84
5.1.1 F8BT介紹 84
5.1.1.1 化學結構與簡介 84
5.1.1.2 基本性質 85
5.1.1.3 分子鏈構形與拉曼光譜的關係 86
5.1.1.4 分子鏈排列與WAXS的關係 87
5.2 研究目的與動機 88
5.3 實驗方法與設備 89
5.3.1 實驗藥品 89
5.3.2 實驗步驟 90
5.3.2.1 F8BT奈米管的製備 90
5.3.2.1 F8BT奈米柱的製備 90
5.3.3 性質鑑定 91
5.3.3.1 F8BT奈米結構之形貌鑑定 91
5.3.3.2 光學性質鑑定 91
5.3.3.3 F8BT分子鏈排列之鑑定 92
5.4 結果與討論 92
5.4.1 形貌的鑑定 93
5.4.1.1 F8BT奈米結構之鑑定 93
5.4.1.2 F8BT溶液之濃度效應 95
5.4.1.3 AAO模板之孔徑效應 96
5.4.2 奈米受限效應對F8BT光學性質的影響 97
5.4.2.1 UV-Vis吸收光譜之結果 97
5.4.2.2 PL放光光譜之結果 98
5.4.3 奈米受限效應對F8BT分子構形與排列的影響 100
5.4.3.1 共軛焦雷射拉曼光譜之結果 100
5.4.3.2 廣角X光散射(WAXS)之結果 102
5.4.4 F8BT奈米管之發光與磁響應性複合材料 103
5.5 結論 104
第六章 利用表面起始原子轉移自由基聚合法於陽極氧化鋁模板上接枝兩性離子高分子刷及探討幾何效應對高分子鏈生長的影響 105
6.1 文獻回顧 105
6.1.1 PMAPS 介紹 105
6.1.2 在凹面基板上生長高分子的受限效應 106
6.1.2.1 指出在受限環境下仍能做出低分子量分布的研究 107
6.1.2.2 指出受限效應使分子量下降與分子量分布上升的研究 108
6.2 研究目的與動機 109
6.3 實驗方法與設備 110
6.3.1 實驗藥品 110
6.3.2 實驗步驟 111
6.3.2.1 MAPS單體的合成 111
6.3.2.2 含溴起始基團(BUPA)於AAO模板表面上的接枝 113
6.3.2.3 利用SI-ATRP於AAO模板表面接枝PMAPS高分子刷 113
6.3.2.4 金奈米粒子於接枝PMAPS的AAO模板孔洞中之固定 116
6.3.3 性質鑑定 116
6.3.3.1 核磁共振氫譜(1H NMR) 116
6.3.3.2 粒徑篩析層析法(SEC) 116
6.3.3.3 比表面積分析(BET) 117
6.3.3.4 掃描式電子顯微鏡(SEM) 118
6.3.3.5 接觸角量測(Contact Angle) 118
6.3.3.6 X射線光電子能譜儀(XPS) 119
6.3.3.7 原子力顯微鏡(AFM) 119
6.3.3.8 熱重分析(TGA) 119
6.3.3.9 雷射拉曼顯微光譜(LRMS) 120
6.4 結果與討論 120
6.4.1 自由PMAPS之鑑定 120
6.4.1.1 核磁共振氫譜(1H NMR) 120
6.4.1.2 粒徑篩析層析法(SEC) 122
6.4.2 接枝於AAO模板上的PMAPS高分子刷之鑑定 123
6.4.2.1 親疏水性測試 123
6.4.2.2 表面形貌與粗糙度 125
6.4.2.3 表面元素分析 128
6.4.2.4 PMAPS高分子鏈於孔洞中生長的幾何效應與接枝密度 130
6.4.2.5 PMAPS高分子刷於AAO模板孔洞中之均勻性分析 136
6.4.2.6 金奈米粒子於AAO模板孔洞中的固定測試 140
6.5 結論 142
第七章 研究總結與未來方向 143
7.1 研究總結 143
7.2 未來方向 144
7.2.1 以硬質陽極氧化法備大孔徑AAO模板(第I象限) 144
7.2.2 孔洞方向上下不對稱之AAO模板(第II象限) 145
7.2.2.1 孔徑大小不對稱 145
7.2.2.2 表面性質不對稱 146
7.2.3 非圓形孔洞之AAO模板 146
7.2.3.1 對稱但非圓形孔洞的AAO模板之應用(第IV象限) 146
7.2.3.2 孔洞形狀不對稱之陽極氧化鋁線之製備(第III象限) 146
7.2.4 利用高分子刷改質AAO模板的應用 147
7.2.4.1 PMAPS高分子刷 147
7.2.4.2 聚苯乙烯高分子刷 147
第八章 參考文獻 149
第九章 作者簡歷 158
1. Buff, H., Ueber das electrische Verhalten des Aluminiums. Justus Liebigs Annalen der Chemie 1857, 102 (3), 265-284.
2. Takahashi, H.; Saito, Y.; Nagayama, M., Effects of Electrolyte Anions on The Formation of Barrier Type Oxide Films on Aluminum. Journal of the Metal Finishing Society of Japan 1982, 33 (5), 225-231.
3. Thompson, G. E., Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films 1997, 297 (1-2), 192-201.
4. Nishinaga, O.; Kikuchi, T.; Natsui, S.; Suzuki, R. O., Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci Rep 2013, 3.
5. Kape, J. M., Unusual anodizing processes and their practical significance. Electroplating and Metal Finish 1961, 45, 34-42.
6. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P., The Formation of controlled-porosity membranes from anodically oxidized aluminum. Nature 1989, 337 (6203), 147-149.
7. Thompson, G. E.; Wood, G. C., Porous anodic film formation on aluminum. Nature 1981, 290 (5803), 230-232.
8. Kape, J. M., The use of malonic acid as an anodising electrolyte. Metallugia 1959, 60, 181-191.
9. Martin, J.; Maiz, J.; Sacristan, J.; Mijangos, C., Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications. Polymer 2012, 53 (6), 1149-1166.
10. Lee, W.; Park, S. J., Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114 (15), 7487-7556.
11. Jani, A. M. M.; Losic, D.; Voelcker, N. H., Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58 (5), 636-704.
12. Chen, J. T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M. F.; Russell, T. P., Amorphous carbon nanotubes with tunable properties via template wetting. Adv. Funct. Mater. 2006, 16 (11), 1476-1480.
13. Cepak, V. M.; Martin, C. R., Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mat. 1999, 11 (5), 1363-1367.
14. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U., Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296 (5575), 1997-1997.
15. Pethrick, R. A., Introduction to microlithography (2nd edition). Polymer International 1995, 37 (3), 231-231.
16. Tirrell, M.; Kokkoli, E.; Biesalski, M., The role of surface science in bioengineered materials. Surf. Sci. 2002, 500 (1-3), 61-83.
17. Tsai, C.-C., Instability in polymer thin films coated in the nanopores of anodic aluminum oxide templates. Ph. D. Thesis, National Chiao Tung University. 2015.
18. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1946, 1 (6), 513-538.
19. Sagiv, J., Organized monolayers by adsorption. 1. formation and structure of oleophobic mixed monolayers on solid-surfaces. J. Am. Chem. Soc. 1980, 102 (1), 92-98.
20. Sagiv, J., Organized monolayers by adsorption. 2. molecular-orientation in mixed dye monolayers built on anisotropic polymeric surfaces. Isr. J. Chem. 1979, 18 (3-4), 339-345.
21. Sagiv, J., Organized monolayers by adsorption. 3. irreversible adsorption and memory effects in skeletonized silane monolayers. Isr. J. Chem. 1979, 18 (3-4), 346-353.
22. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 1983, 105 (13), 4481-4483.
23. Hui, C. M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M. R.; Matyjaszewski, K., Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mat. 2014, 26 (1), 745-762.
24. Pujari, S. P.; Scheres, L.; Marcelis, A. T. M.; Zuilhof, H., Covalent surface modification of oxide surfaces. Angew. Chem.-Int. Edit. 2014, 53 (25), 6322-6356.
25. Milner, S. T.; Witten, T. A.; Cates, M. E., Theory of the grafted polymer brush. Macromolecules 1988, 21 (8), 2610-2619.
26. Milner, S. T., Polymer brushes. Science 1991, 251 (4996), 905-914.
27. Ohnishi, M.; Kozuka, Y.; Ye, Q. L.; Yoshikawa, H.; Awaga, K.; Matsuno, R.; Kobayashi, M.; Takahara, A.; Yokoyama, T.; Bandow, S.; Iijima, S., Phase selective preparations and surface modifications of spherical hollow nanomagnets. J. Mater. Chem. 2006, 16 (31), 3215-3220.
28. Reiter, G.; Auroy, P.; Auvray, L., Instabilities of thin polymer films on layers of chemically identical grafted molecules. Macromolecules 1996, 29 (6), 2150-2157.
29. Halperin, A.; Tirrell, M.; Lodge, T. P., Tethered chains in polymer microstructures. Adv. Polym. Sci. 1992, 100, 31-71.
30. Myungwoong, K.; Schmitt, S. K.; Choi, J. W.; Krutty, J. D.; Gopalan, P., From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers 2015, 7 (7), 1346-1378.
31. Wang, J. S.; Matyjaszewski, K., Controlled living radical polymerization-atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614-5615.
32. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995, 28 (5), 1721-1723.
33. Patten, T. E.; Xia, J. H.; Abernathy, T.; Matyjaszewski, K., Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996, 272 (5263), 866-868.
34. Cui, Y.; Tao, C.; Zheng, S. P.; He, Q.; Ai, S. F.; Li, J. B., Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane. Macromol. Rapid Commun. 2005, 26 (19), 1552-1556.
35. Cui, Y.; Tao, C.; Tian, Y.; He, Q.; Li, J. B., Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 2006, 22 (19), 8205-8208.
36. Li, P. F.; Xie, R.; Jiang, J. C.; Meng, T.; Yang, M.; Ju, X. J.; Yang, L. H.; Chu, L. Y., Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J. Membr. Sci. 2009, 337 (1-2), 310-317.
37. Szuwarzynski, M.; Zaraska, L.; Sulka, G. D.; Zapotoczny, S., Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mat. 2013, 25 (3), 514-520.
38. Gao, L.; Zhu, W.; Zhang, K.; Chen, Y. M., Tubular polymer nanoobjects with a crosslinked shell and inward-grafted polymer brushes. Macromol. Mater. Eng. 2012, 297 (7), 639-644.
39. Liu, J. X.; Ma, S. H.; Wei, Q. B.; Jia, L.; Yu, B.; Wang, D. A.; Zhou, F., Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis. Nanoscale 2013, 5 (23), 11894-11901.
40. Ma, S. H.; Liu, J. X.; Ye, Q.; Wang, D. A.; Lianga, Y. M.; Zhou, F., A general approach for construction of asymmetric modification membranes for gated flow nanochannels. J. Mater. Chem. A 2014, 2 (23), 8804-8814.
41. Heeger, A. J., Semiconducting and metallic polymers: The fourth generation of polymeric materials. MRS Bulletin 2012, 26 (11), 900-904.
42. Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers-halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc.-Chem. Commun. 1977, (16), 578-580.
43. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39 (17), 1098-1101.
44. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B., Light-emitting-diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541.
45. Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G., Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43 (10), 3259-3302.
46. Kong, F.; Wu, X. L.; Huang, G. S.; Yang, Y. M.; Yuan, R. K.; Yang, C. Z.; Chu, P. K.; Siu, G. G., Optical emission from nano-poly 2-methoxy-5-(2 '-ethyl-hexyloxy)-p-phenylene vinylene arrays. J. Appl. Phys. 2005, 98 (7).
47. Kong, F.; Huang, G. S.; Yang, Y. M.; Yang, C. Z.; Bao, X. M.; Yuan, R. K., Conformation and luminescence characteristics of nanopoly 2-metoxy-5-(2 '-ethyl-hexyloxy)-p-phenylene vinylene in two-dimensional arrays. J. Polym. Sci. Pt. B-Polym. Phys. 2006, 44 (21), 3037-3041.
48. Kong, F.; Yang, Y. M.; Zhang, X. Q.; Lin, B. P.; Qi, Z. J.; Qiu, T., Effect of absorption to nanopore on optical properties of conjugated polymers in porous anode alumina. J. Appl. Phys. 2011, 109 (4).
49. O'Carroll, D.; Lieberwirth, I.; Redmond, G., Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol. 2007, 2 (3), 180-184.
50. O'Carroll, D.; Lieberwirth, I.; Redmond, G., Melt-processed polyfluorene nanowires as active waveguides. Small 2007, 3 (7), 1178-1183.
51. O'Carroll, D.; Irwin, J.; Tanner, D. A.; Redmond, G., Polyfluorene nanowires with pronounced axial texturing prepared by melt-assisted template wetting. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2008, 147 (2-3), 298-302.
52. O'Carroll, D.; Redmond, G., Polyfluorene nanowire active waveguides as sub-wavelength polarized light sources. Physica E 2008, 40 (7), 2468-2473.
53. O'Carroll, D.; Iacopino, D.; O'Riordan, A.; Lovera, P.; O'Connor, E.; O'Brien, G. A.; Redmond, G., Poly(9,9-dioctylfluorene) nanowires with pronounced beta-phase morphology: Synthesis, characterization, and optical properties. Adv. Mater. 2008, 20 (1), 42-48.
54. O'Carroll, D.; Redmond, G., Highly anisotropic luminescence from poly(9,9-dioctylfluorene) nanowires doped with orientationally ordered beta-phase polymer chains. Chem. Mat. 2008, 20 (20), 6501-6508.
55. Moynihan, S.; Lacopino, D.; O'Carroll, D.; Lovera, P.; Redmond, G., Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mat. 2008, 20 (3), 996-1003.
56. Iacopino, D.; Lovera, P.; O'Riordan, A.; Redmond, G., Highly polarized luminescence from beta-phase-rich poly(9,9-dioctylfluorene) nanofibers. J. Phys. Chem. A 2014, 118 (29), 5437-5442.
57. Iacopino, D.; Redmond, G., Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers. Nanotechnology 2014, 25 (43).
58. Aguilar, M. R.; Román, J. S., Smart polymers and their applications. Elsevier 2014, 15-21.
59. Zhuang, J.; Gordon, M. R.; Ventura, J.; Li, L.; Thayumanavan, S., Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013, 42 (17), 7421-7435.
60. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268 (5216), 1466-1468.
61. Su, Z. X.; Buehl, M.; Zhou, W. Z., Dissociation of water during formation of anodic aluminum oxide. J. Am. Chem. Soc. 2009, 131 (24), 8697-8702.
62. Jessensky, O.; Muller, F.; Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72 (10), 1173-1175.
63. Thamida, S. K.; Chang, H.-C., Nanoscale pore formation dynamics during aluminum anodization. Chaos 2002, 12 (1), 240-251.
64. Güntherschulze, A.; Betz, H., Die bewegung der ionengitter von isolatoren bei extremen elektrischen feldstärken. Z. Physik 1934, 92 (5-6), 367-374.
65. Ghicov, A.; Schmuki, P., Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, (20), 2791-2808.
66. Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U., Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84 (11), 6023-6026.
67. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5 (9), 741-747.
68. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 1995, 268 (5216), 1466-1468.
69. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T., Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71 (19), 2770-2772.
70. Liu, C. Y.; Datta, A.; Wang, Y. L., Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001, 78 (1), 120-122.
71. Lee, M. H.; Lim, N.; Ruebusch, D. J.; Jamshidi, A.; Kapadia, R.; Lee, R.; Seok, T. J.; Takei, K.; Cho, K. Y.; Fan, Z. Y.; Jang, H.; Wu, M.; Cho, G.; Javey, A., Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 2011, 11 (8), 3425-3430.
72. Huang, Y.-C., Fabrication of anodic aluminum oxide templates and the rayleigh instability of polymer nanofibers. Master Thesis, National Chiao Tung University. 2012.
73. Byun, J.; Lee, J. I.; Kwon, S.; Jeon, G.; Kim, J. K., Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods. Adv. Mater. 2010, 22 (18), 2028-2032.
74. Chu, C. W.; Huang, Y. C.; Tsai, C. C.; Chen, J. T., Wetting in nanopores of cylindrical anodic aluminum oxide templates: Production of gradient polymer nanorod arrays on large-area curved surfaces. Eur. Polym. J. 2015, 63, 141-148.
75. Yin, A. J.; Guico, R. S.; Xu, J., Fabrication of anodic aluminium oxide templates on curved surfaces. Nanotechnology 2007, 18 (3).
76. Sanz, R.; Hernandez-Velez, M.; Pirota, K. R.; Baldonedo, J. L.; Vazquez, M., Fabrication and magnetic functionatization of cylindrical porous anodic alumina. Small 2007, 3 (3), 434-437.
77. Sun, F. Q.; Cai, W. P.; Li, Y.; Jia, L. C.; Lu, F., Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 2005, 17 (23), 2872.
78. Khan, A.; Wang, Z. B.; Sheikh, M. A.; Whitehead, D. J.; Li, L., Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays. J. Phys. D-Appl. Phys. 2010, 43 (30).
79. Chen, J. T.; Chen, W. L.; Fan, P. W., Hierarchical structures by wetting porous templates with electrospun polymer fibers. ACS Macro Lett. 2012, 1 (1), 41-46.
80. Yin, S.; Ruffin, P.; Brantley, C.; Edwards, E.; Luo, C., Fabrication of nanostructures on curved surfaces. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Vii, Yin, S.; Guo, R., Eds. Spie-Int Soc Optical Engineering: Bellingham, 2013; Vol. 8847.
81. de Gennes, P. G.; Brochard-Wyart, F.; Quere, D., Capillarity and wetting phenomena. Springer 2006.
82. Tanaka, T.; Morigami, M.; Atoda, N., Mechanism of resist pattern collapse during development process. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1993, 32 (12B), 6059-6064.
83. Chen, G.; Soper, S. A.; McCarley, R. L., Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles. Langmuir 2007, 23 (23), 11777-11781.
84. Chu, C. W.; Jeng, K. S.; Chi, M. H.; Tsai, C. C.; Cheng, M. H.; Chen, J. T., Confinement effects on the optical properties and chain conformations of poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) nanotubes. Macromol. Chem. Phys. 2016, 217 (18), 2074-2080.
85. Donley, C. L.; Zaumseil, J.; Andreasen, J. W.; Nielsen, M. M.; Sirringhaus, H.; Friend, R. H.; Kim, J. S., Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2005, 127 (37), 12890-12899.
86. Kim, J. S.; Ho, P. K. H.; Murphy, C. E.; Friend, R. H., Phase separation in polyfluorene-based conjugated polymer blends: Lateral and vertical analysis of blend spin-cast thin films. Macromolecules 2004, 37 (8), 2861-2871.
87. Banach, M. J.; Friend, R. H.; Sirringhaus, H., Influence of the molecular weight on the thermotropic alignment of thin liquid crystalline polyfluorene copolymer films. Macromolecules 2003, 36 (8), 2838-2844.
88. Kim, J. S.; Ho, P. K. H.; Murphy, C. E.; Baynes, N.; Friend, R. H., Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv. Mater. 2002, 14 (3), 206-209.
89. Ariu, M.; Lidzey, D. G.; Bradley, D. D. C., Influence of film morphology on the vibrational spectra of dioctyl substituted polyfluorene (PFO). Synth. Met. 2000, 111, 607-610.
90. Song, G.; She, X.; Fu, Z.; Li, J., Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques. Journal of Materials Research 2004, 19 (11), 3324-3328.
91. Zhao, Y. J.; Zhao, Q. S.; Lu, L. J.; Ye, S. Y., Fabrication of polyurethane(PU) nanotubes with array by wetting anodic aluminium oxide template with polymer solution and melt. Materials Research Innovations 2015, 19 (5), 345-348.
92. Lee, C.-W., The morphology of polymer materials controlled by the template method. Master Thesis, National Chiao Tung University. 2012.
93. Chu, C. W.; Higaki, Y.; Cheng, C. H.; Cheng, M. H.; Chang, C. W.; Chen, J. T.; Takahara, A., Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polym. Chem. 2017, 8 (15), 2309-2316.
94. Higaki, Y.; Nishida, J.; Takenaka, A.; Yoshimatsu, R.; Kobayashi, M.; Takahara, A., Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 2015, 47 (12), 811-818.
95. Kato, T.; Takahashi, A., Excluded volume effects of sulphobetaine polymers. Berichte der Bunsengesellschaft für physikalische Chemie 1996, 100 (6), 784-787.
96. Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas, J. J.; Soni, L.; Handwerker, B.; Garner, R. T., Phase-behavior and solution properties of sulfobetaine polymers. Polymer 1986, 27 (11), 1734-1742.
97. Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K., Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas. Macromolecules 2008, 41 (22), 8584-8591.
98. Genzer, J., In silico polymerization:  Computer simulation of controlled radical polymerization in bulk and on flat surfaces. Macromolecules 2006, 39 (20), 7157-7169.
99. Gorman, C. B.; Petrie, R. J.; Genzer, J., Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 2008, 41 (13), 4856-4865.
100. Pasetto, P.; Blas, H.; Audouin, F.; Boissière, C.; Sanchez, C.; Save, M.; Charleux, B., Mechanistic insight into surface-initiated polymerization of methyl methacrylate and styrene via atrp from ordered mesoporous silica particles. Macromolecules 2009, 42 (16), 5983-5995.
101. Terayama, Y.; Kikuchi, M.; Kobayashi, M.; Takahara, A., Well-defined poly(sulfobetaine) brushes prepared by surface-initiated atrp using a fluoroalcohol and ionic liquids as the solvents. Macromolecules 2011, 44 (1), 104-111.
102. Murakami, D.; Jinnai, H.; Takahara, A., Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30 (8), 2061-2067.
103. Lalani, R.; Liu, L. Y., Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer 2011, 52 (23), 5344-5354.
104. Marutani, E.; Yamamoto, S.; Ninjbadgar, T.; Tsujii, Y.; Fukuda, T.; Takano, M., Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 2004, 45 (7), 2231-2235.
105. Turgman-Cohen, S.; Genzer, J., Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates. J. Am. Chem. Soc. 2011, 133 (44), 17567-17569.
106. Turgman-Cohen, S.; Genzer, J., Computer simulation of concurrent bulk- and surface-initiated living polymerization. Macromolecules 2012, 45 (4), 2128-2137.
107. Rouquerol, F.; Rouquerol, J.; Sing, K., Chapter 1 - Introduction. In Adsorption by powders and porous solids, Academic Press: London, 1999; pp 1-26.
108. Larkin, P., Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier 2011, 128-130.
109. Liu, S.; Tang, S.; Zhou, H.; Fu, C.; Huang, Z.; Liu, H.; Kuang, Y., Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters. Journal of Solid State Electrochemistry 2013, 17 (7), 1931-1938.
110. Nagaura, T.; Takeuchi, F.; Inoue, S., Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochimica Acta 2008, 53 (5), 2109-2114.
111. Lee, W.; Schwirn, K.; Steinhart, M.; Pippel, E.; Scholz, R.; Gosele, U., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 2008, 3 (4), 234-239.
112. Mutalib Md Jani, A.; Anglin, E. J.; McInnes, S. J. P.; Losic, D.; Shapter, J. G.; Voelcker, N. H., Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem. Commun. 2009, (21), 3062-3064.
113. Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T., Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 2001, 13 (3), 189-192.
114. Lee, C. W.; Wei, T. H.; Chang, C. W.; Chen, J. T., Effect of Nonsolvent on the Formation of Polymer Nanomaterials in the Nanopores of Anodic Aluminum Oxide Templates. Macromol. Rapid Commun. 2012, 33 (16), 1381-1387.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔