(3.238.7.202) 您好!臺灣時間:2021/03/02 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張宏銘
研究生(外文):Chang, Hung-Ming
論文名稱:多孔性碳電極鈣鈦礦太陽能電池設計與大面積化研究
論文名稱(外文):esign and scale-up for carbon-based mesoscopic perovskite solar cells
指導教授:刁維光
指導教授(外文):Diau, Wei-Guang
口試委員:刁維光洪政雄楊耀文
口試委員(外文):Diau, Wei-GuangHung, Chen-HsiungYang, Yaw-Wen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:鈣鈦礦太陽能電池碳電極大面積多孔性二氧化鈦
外文關鍵詞:PerovskiteSolar cellsCarbon electrodeLarge-scaleMesoprous TiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對鈣鈦礦太陽能電池碳電極研究並且分為兩個部分,第一部份為大面積的設計與開發,我們探討串聯與並聯對元件效率的關係與影響,並且製作出面積為19 cm2之元件,其開路電壓可以達到3.3伏特,效率可以達到6.64%。並且在科技部的計畫下設計出了2X2的大面積碳電極鈣鈦礦太陽能電池,設計出最佳的模組後,我們探討了不同的滲透溫度,以及不同溶劑比例的影響。實際面積3 cm2時,效率可以達到9.77%。採用封裝後,其效率可以穩定的維持在9.5%上下超過2200小時。
第二部分則是在原本碳電極的基礎上,藉由更換使用om-TiO2來增加填充因子,添加NiO用以增加開路電壓,我們使用1000nm om-TiO2 /500nm Al2O3/ 500nm NiO /Carbon之元件,使用兩步沉積法在65度時滴塗3μL的二碘化鉛溶液(DMF/DMSO 9/1),可以得到最好的效率。其光電轉換效率為14.32%,IPCE積分電流可達18.55 mA cm-2,元件的平均效率為13.98±0.34 %。
My thesis is focused on large scale and polymer-template carbon-based mesoscopic perovskite solar cells (CMPSC). For design and development of large scale CMPSC, the small modules of CMPSC were well studied. The VOC and power conversion efficiencies (PCE) have respectively reached 3.3 V and 6.64% of the devices with 19 cm2 area. For a 2*2 cm2 CMPSC devices, effects of different penetration temperatures as well as the different solvent ratios both were well studied. The PCE can reach 9.77% with actual working area of 3 cm2; moreover, the encapsulated CMPSC long-term stability can reach over 2200 hours.
The second part device engineering of polymer-template CMPSC, the polymer-template TiO2 was introduced, in order to improve the filtration of precursor solution. Moreover, one more NiO mesoporous layer was inserted between Al2O3 and carbon layer, which that served as hole extraction layer. The device structure of 1000nm polymer-template TiO2 / 500nm Al2O3 / 500nm NiO / Carbon showed the best PCE, 14.32% (average is 13.98 ± 0.34%) and IPCE integration current is up to 18.55 mA cm-2 with the modified two-step deposition method.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
第二章 文獻回顧 3
2-1 鈣鈦礦太陽能電池 (Perovskite solar cell) 3
2-1-1 鈣鈦礦太陽能電池的發展 5
2-1-2 工作原理與機制 14
2-1-3 鈣鈦礦太陽能電池之優劣勢 16
2-1-4 鈣鈦礦太陽能電池結構 21
2-1-5 鈣鈦礦成膜方法 24
2-2 無電洞傳輸層之鈣鈦礦太陽能電池-碳電極 27
2-3 研究動機 38
第三章 實驗步驟與方法 39
3-1 實驗藥品與儀器 39
3-2 實驗步驟 45
3-2-1 導電玻璃FTO的蝕刻與清洗 46
3-2-2 緻密二氧化鈦層的製備 46
3-2-3 網印多孔性二氧化鈦薄膜 47
3-2-4 網印多孔性氧化鋁阻絕層和碳電極 47
3-2-5 沉積鈣鈦礦 48
3-3元件量測 50
3-3-1鈣鈦礦太陽能電池之光電轉換效率量測 50
3-3-2鈣鈦礦太陽能電池外部量子效率量測 52
第四章 鈣鈦礦太陽能電池碳電極-大面積 53
4-1 碳電極元件厚度優化 54
4-1-1不同二氧化鈦薄膜厚度對元件效率之影響 54
4-1-2 不同氧化鋁薄膜厚度對元件效率之影響 57
4-2 不同串聯並聯之大面積模組 60
4-3 2X2大面積電池模組優化 65
4-3-1 2X2大面積電池不同模組及滴塗方式對元件效率之影響 65
4-3-2 2X2大面積電池不同滲透溫度對元件效率之影響 70
4-3-3 2X2大面積電池不同溶劑比例對元件效率之影響 72
4-3-4 2X2大面積電池封裝及長效性測試 76
4-4 結論 79
第五章 鈣鈦礦太陽能電池碳電極元件優化 80
5-1 元件結構 80
5-2 二氧化鈦薄膜最佳化 82
5-2-1 不同二氧化鈦薄膜製作方法 82
5-2-2 不同二氧化鈦之效率比較 88
5-3 不同氧化鋁薄膜厚度對元件效率之影響 93
5-4 不同氧化鎳薄膜厚度對元件效率之影響 95
5-5 不同滲透溫度對元件效率之影響 98
5-6 滴加不同二碘化鉛溶液量對元件效率之影響 100
5-7 不同溶劑比例對元件效率之影響 103
5-8 不同二氧化鈦薄膜以及有無添加氧化鎳比較 106
5-9 結論 112
第六章 總結 115
參考文獻 116
1. https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
2. http://www.ieo.nctu.edu.tw/timtclu/intro/super_pages.php?ID=intro2&Sn=5
3. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051.
4. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
5. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
6. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643.
7. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
8. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
9. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25 (27), 3727-3732.
10. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications 2013, 4, 2761.
11. Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full printable processed mesoscopic CH(3)NH(3)PbI(3)/TiO(2) heterojunction solar cells with carbon counter electrode. Sci Rep 2013, 3, 3132.
12. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542.
13. Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P., Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells. J. Mater. Chem. A 2015, 3 (15), 8178-8184.
14. Tsai, C.-M.; Wu, G.-W.; Narra, S.; Chang, H.-M.; Mohanta, N.; Wu, H.-P.; Wang, C.-L.; Diau, E. W.-G., Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. J. Mater. Chem. A 2017, 5 (2), 739-747.
15. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc. 2015, 137 (27), 8696-8699.
16. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-7.
17. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3 (15), 8139-8147.
18. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13 (4), 1764-1769.
19. Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J., Formation of Thin Films of Organic–Inorganic Perovskites for High-Efficiency Solar Cells. Angew. Chem. Int. Ed. 2015, 54 (11), 3240-3248.
20. Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X., Perovskite Solar Cell with an Efficient TiO2 Compact Film. ACS Applied Materials & Interfaces 2014, 6 (18), 15959-15965.
21. Zheng, L.; Zhang, D.; Ma, Y.; Lu, Z.; Chen, Z.; Wang, S.; Xiao, L.; Gong, Q., Morphology control of the perovskite films for efficient solar cells. Dalton Trans. 2015, 44 (23), 10582-10593.
22. El-Henawey, M. I.; Gebhardt, R. S.; El-Tonsy, M. M.; Chaudhary, S., Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells. J. Mater. Chem. A 2016, 4 (5), 1947-1952.
23. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7 (8), 2619-2623.
24. Zhao, Z.; Sun, W.; Li, Y.; Ye, S.; Rao, H.; Gu, F.; Liu, Z.; Bian, Z.; Huang, C., Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J. Mater. Chem. A 2017, 5 (10), 4756-4773.
25. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134 (42), 17396-17399.
26. Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H., Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3. J. Mater. Chem. A 2014, 2 (40), 17115-17121.
27. Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T., Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. The Journal of Physical Chemistry Letters 2014, 5 (18), 3241-3246.
28. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Gratzel, M.; Han, H., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295-8.
29. Sheng, Y.; Hu, Y.; Mei, A.; Jiang, P.; Hou, X.; Duan, M.; Hong, L.; Guan, Y.; Rong, Y.; Xiong, Y.; Han, H., Enhanced electronic properties in CH3NH3PbI3via LiCl mixing for hole-conductor-free printable perovskite solar cells. J. Mater. Chem. A 2016, 4 (42), 16731-16736.
30. Liu, Z.; Zhang, M.; Xu, X.; Bu, L.; Zhang, W.; Li, W.; Zhao, Z.; Wang, M.; Cheng, Y. B.; He, H., p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans 2015, 44 (9), 3967-73.
31. Xu, X.; Liu, Z.; Zuo, Z.; Zhang, M.; Zhao, Z.; Shen, Y.; Zhou, H.; Chen, Q.; Yang, Y.; Wang, M., Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 2015, 15 (4), 2402-8.
32. Chen, J.; Xiong, Y.; Rong, Y.; Mei, A.; Sheng, Y.; Jiang, P.; Hu, Y.; Li, X.; Han, H., Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 2016, 27, 130-137.
33. Chen, H.; Wei, Z.; He, H.; Zheng, X.; Wong, K. S.; Yang, S., Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials 2016, 6 (8), 1502087-n/a.
34. Cohen, B.-E.; Aharon, S.; Dymshits, A.; Etgar, L., Impact of Antisolvent Treatment on Carrier Density in Efficient Hole-Conductor-Free Perovskite-Based Solar Cells. The Journal of Physical Chemistry C 2016, 120 (1), 142-147.
35. Chan, C.-Y.; Wang, Y.; Wu, G.-W.; Wei-Guang Diau, E., Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J. Mater. Chem. A 2016, 4 (10), 3872-3878.
36. https://www.folsomlabs.com/modeling/module/module_model
37. Shiu, J.-W.; Lan, C.-M.; Chang, Y.-C.; Wu, H.-P.; Huang, W.-K.; Diau, E. W.-G., Size-Controlled Anatase Titania Single Crystals with Octahedron-like Morphology for Dye-Sensitized Solar Cells. ACS Nano 2012, 6 (12), 10862-10873.
38. Ahn, S. H.; Chi, W. S.; Park, J. T.; Koh, J. K.; Roh, D. K.; Kim, J. H., Direct assembly of preformed nanoparticles and graft copolymer for the fabrication of micrometer-thick, organized TiO2 films: high efficiency solid-state dye-sensitized solar cells. Adv. Mater. 2012, 24 (4), 519-22.
39. Ahire, D. V.; Patil, G. E.; Jain, G. H.; Gaikwad, V. B. In Synthesis of nanostructured NiO by hydrothermal route and its gas sensing properties, 2012 Sixth International Conference on Sensing Technology (ICST), 18-21 Dec. 2012; 2012; pp 136-141.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔