跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晨歡
研究生(外文):Li, Chen-Huan
論文名稱:B型肝炎病毒的檢測研究
論文名稱(外文):The Study of Hepatitis B Virus Detection
指導教授:李耀坤李耀坤引用關係
指導教授(外文):Li,Yaw-Kuen
口試委員:吳東昆許馨云
口試委員(外文):Wu, Tung-KungHsu, Hsin-Yun
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:B型肝炎面抗原氧化鎳箔酵素免疫分析
外文關鍵詞:HBsAgNiO foilELISA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝癌為台灣十大癌症之一,其中患有肝癌的台灣人中,有高達 80% 為 B 型肝炎或 C 型肝炎病毒所致。而傳統檢測 B 型肝炎方法需要專業人員以及昂貴設備才能進行。故此,本研究欲開發攜帶型 B 型肝炎表面抗原快篩試片並且可直接以肉眼觀察檢測結果,以協助偏鄉或醫療資源不足地區達到早期篩檢、防疫。而研究中利用抗原與單鍊抗體之間的專一性結合力配合酵素免疫分析法,並以氧化鎳箔為 B 型肝炎表面抗原檢測之平台。
本研究所應用 B 型肝炎表面抗原a決定位之單鍊抗體 (scFv anti-HBsAg_a determinant) 於大腸桿菌中表現後,目標蛋白多聚集於包涵體當中,此問題不利蛋白進行後續純化生產。為增加此蛋白水溶性,研究中運用基因工程技術將目標基因與七種可能增加蛋白水溶性的標籤蛋白融合。其中以 Tsf (E. coli elongation factor) 或 Bla (beta-lactamase) 融合後,所產出的 B 型肝炎表面抗原 a 決定位之單鍊抗體水溶性確實增加,表現量也大幅提高。
隨後,因產出的 B 型肝炎表面抗原a決定位之單鍊抗體中擁有 6×His tags,其與氧化鎳具有親和力。所以選用氧化鎳箔開發 B 型肝炎表面抗原檢測平台。
研究中將鎳箔分別以硝酸及氫氧化鋰浸泡,運用高溫氧化金屬表面製備氧化鎳箔,並鑑定其材料表面形貌與組成。接著將經過不同程序處理所製備的氧化鎳箔,修飾上 B 型肝炎表面抗原 a 決定位之單鍊抗體進行酵素免疫分析,以驗證此平台對 B 型肝炎表面抗原辨識能力。當中以 1% 氫氧化鋰浸泡 72 小時並退火 800℃ 1 小時之氧化鎳箔為 B 型肝炎表面抗原檢測平台其靈敏度最佳,偵測極限為34 ng/mL。
Hepatocellular carcinoma is one of the most serious cancers in Taiwan. People who infect hepatitis B or hepatitis C virus are high risk in developing hepatocellular carcinoma. Since the traditional way of hepatitis B virus examination requires professional technicians and expensive equipment, we aim to develop a feasible and simple method for HBsAg diagnosis.
In this study, an ELISA assay is employed for quantitative analysis detection of HBsAg a-determinant. An scFv, obtained from our previous study through a phage display screening, was planed to immobilize on a lab-made NiO chip to function as the capture layer for HBsAg a determinant recognition. However, most of scFvs against a-determinant of HBsAg aggregated to form an inclusion body when they were expressed in E.coli. To improve the solubility of target scFv, the corresponding gene was fused with seven carrier proteins, separately. Among the various tags, Tsf and Bla enhance the expression and solubility of the target scFv.
Since the surface of material containing NiO has been shown to possess strong affinity towards protein containing polyhistidine tags, we select NiO foil as the substrate of chip for scFv immobilization and subsequently for HBsAg detection. The NiO foil was prepared through thermal oxidation, which facilitates the formation of metal-oxide nanostructures from metallic materials. By using NiO chip, we successfully demonstrated the sensitivity of HBsAg detection was significantly improved and the detection limit was 34 ng/mL.
摘要 Ⅰ
Abstract Ⅱ
謝誌 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅶ
第一章 緒論 1
1-1 B型肝炎病毒介紹 1
1-1-1 肝炎 1
1-1-2 B型肝炎病毒流行病學 2
1-1-3 B型肝炎病毒分類學 3
1-1-4 B型肝炎病毒結構及基因結構 5
1-1-5 B型肝炎表面抗原 7
1-1-6 B型肝炎病毒感染之檢測 9
1-1-7 B型肝炎病毒血清學 10
1-2 免疫分析方法 11
1-2-1 放射免疫分析法 12
1-2-2 酵素免疫分析法 12
1-2-3 螢光免疫分析法 14
1-3 以融合標籤蛋白提高目標蛋白溶解度 15
1-4 鎳離子與多重組胺酸親和力之應用 17
1-5 研究動機 19
第二章 實驗方法 20
2-1 實驗藥品 20
2-2 實驗儀器 20
2-3 培養基、電泳、緩衝液及反應配方法 21
2-4 scFv anti-HBsAg_a determinant融合標籤蛋白 24
2-4-1 質體構築 24
2-4-2 熱休克轉型 25
2-4-3 scFv anti-HBsAg_a determinant融合標籤蛋白之表現 25
2-4-4 scFv anti-HBsAg_a determinant融合標籤蛋白之純化 25
2-4-5 SDS-PAGE分析 26
2-4-6 scFv anti-HBsAg_a determinant融合標籤蛋白之定量 26
2-4-7 scFv anti-HBsAg_a determinant融合標籤蛋白之保存 27
2-5 B型肝炎表面抗原a決定位 27
2-5-1 B型肝炎表面抗原重組蛋白質之表現 27
2-5-2 B型肝炎表面抗原重組蛋白質之純化 28
2-5-3 西方墨點法 28
2-6 酵素免疫分析法 29
2-7 氧化鎳箔製備 30
2-8 氧化鎳箔應用於酵素免疫分析法 31
第三章 結果與討論 34
3-1 scFv anti-HBsAg_a determinant之重組蛋白 34
3-1-1 scFv anti-HBsAg_a determinant與七個SET融合 34
3-1-2 Tsf-scFv anti-HBsAg_a determinant誘導條件 37
3-1-3 Bla-scFv anti-HBsAg_a determinant誘導條件 39
3-1-4 Tsf-scFv anti-HBsAg_a determinant純化 41
3-1-5 Bla-scFv anti-HBsAg_a determinant純化 42
3-2 B型肝炎表面抗原表現與純化 43
3-3 以96孔盤為檢測平台之酵素免疫分析結果與討論 44
3-4 以氧化鎳箔為B型肝炎表面抗原檢測平台 47
3-4-1 氧化鎳箔之鑑定 47
3-4-2 以氧化鎳箔為檢測平台之酵素免疫分析結果與討論 52
第四章 結論與未來展望 57
4-1 結論 57
4-2 未來展望 58
參考資料 59
附錄 63
1. Levrero, M.; Zucman-Rossi, J., Mechanisms of HBV-induced hepatocellular carcinoma. Journal of hepatology 2016, 64 (1), S84-S101.
2. Schweitzer, A.; Horn, J.; Mikolajczyk, R. T.; Krause, G.; Ott, J. J., Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. The lancet 2015, 386 (10003), 1546-1555.
3. Hung, C.C.; Loh, E.W.; Hu, T.M.; Chiu, H.J.; Hsieh, H.C.; Chan, C.H.; Lan, T.H., Prevalence of hepatitis B and hepatitis C in patients with chronic schizophrenia living in institutions. Journal of the chinese medical association 2012, 75 (6), 275-280.
4. International Agency for Research on Cancer. "A review of human carcinogens: biological agents", World health organization, 100B, pp. 93-123, 2012.
5. Schaefer, S., Hepatitis B virus taxonomy and hepatitis B virus genotypes. World journal of gastroenterology: WJG 2007, 13 (1), 14.
6. Kramvis, A.; Kew, M.; François, G., Hepatitis B virus genotypes. Vaccine 2005, 23 (19), 2409-2423.
7. Liang, T. J., Hepatitis B: the virus and disease. Hepatology 2009, 49 (S5).
8. Gerlich, W. H., Medical virology of hepatitis B: how it began and where we are now. Virology journal 2013, 10 (1), 239.
9. Shi, Y.; Wei, F.; Hu, D.; Li, Q.; Smith, D.; Li, N.; Chen, D., Mutations in the major hydrophilic region (MHR) of hepatitis B virus genotype C in North China. Journal of medical virology 2012, 84 (12), 1901-1906.
10. Urban, S.; Bartenschlager, R.; Kubitz, R.; Zoulim, F., Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014, 147 (1), 48-64.
11. Zhu, H.L.; Li, X.; Li, J.; Zhang, Z.H., Genetic variation of occult hepatitis B virus infection. World journal of gastroenterology 2016, 22 (13), 3531.
12. Ghosh, M.; Nandi, S.; Dutta, S.; Saha, M. K., Detection of hepatitis B virus infection: a systematic review. World journal of hepatology 2015, 7 (23), 2482.
13. Yazdani, Y.; Roohi, A.; Khoshnoodi, J.; Shokri, F., Development of a sensitive enzyme-linked immunosorbent assay for detection of hepatitis B surface antigen using novel monoclonal antibodies. Avicenna journal of medical biotechnology 2010, 2 (4), 207.
14. Ren, Z. Q.; Liu, T. C.; Hou, J. Y.; Chen, M. J.; Chen, Z. H.; Lin, G. F.; Wu, Y. S., A rapid and sensitive method based on magnetic beads for the detection of hepatitis B virus surface antigen in human serum. Luminescence 2014, 29 (6), 591-597.
15. Grange, R.; Thompson, J.; Lambert, D., Radioimmunoassay, enzyme and non-enzyme-based immunoassays. British journal of anaesthesia 2014, 112 (2), 213-216.
16. Correa, A.; Oppezzo, P., Overcoming the solubility problem in E. coli: available approaches for recombinant protein production. Insoluble proteins: methods and protocols 2015, 27-44.
17. Kapust, R. B.; Waugh, D. S., Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein science 1999, 8 (8), 1668-1674.
18. Smith, D. B.; Johnson, K. S., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 1988, 67 (1), 31-40.
19. Marblestone, J. G.; Edavettal, S. C.; Lim, Y.; Lim, P.; Zuo, X.; Butt, T. R., Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein science 2006, 15 (1), 182-189.
20. Goulet, A.; Spinelli, S.; Blangy, S.; van Tilbeurgh, H.; Leulliot, N.; Basta, T.; Prangishvili, D.; Cambillau, C.; Campanacci, V., The thermo‐and acido‐stable ORF‐99 from the archaeal virus AFV1. Protein science 2009, 18 (6), 1316-1320.
21. Han, K.Y.; Song, J.A.; Ahn, K.Y.; Park, J.S.; Seo, H.S.; Lee, J., Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein engineering, design & selection 2007, 20 (11), 543-549.
22. Han, K.Y.; Song, J.A.; Ahn, K.Y.; Park, J.S.; Seo, H.S.; Lee, J., Enhanced solubility of heterologous proteins by fusion expression using stress-induced Escherichia coli protein, Tsf. FEMS microbiology letters 2007, 274 (1), 132-138.
23. Drawz, S. M.; Bonomo, R. A., Three decades of β-lactamase inhibitors. Clinical microbiology reviews 2010, 23 (1), 160-201.
24. Ghavami, A.; Labbé, G.; Brem, J.; Goodfellow, V. J.; Marrone, L.; Tanner, C. A.; King, D. T.; Lam, M.; Strynadka, N. C.; Pillai, D. R., Assay for drug discovery: Synthesis and testing of nitrocefin analogues for use as β-lactamase substrates. Analytical biochemistry 2015, 486, 75-77.
25. Tokunaga, H.; Ishibashi, M.; Arakawa, T.; Tokunaga, M., Highly efficient renaturation of β‐lactamase isolated from moderately halophilic bacteria. FEBS letters 2004, 558 (1-3), 7-12.
26. Block, H.; Maertens, B.; Spriestersbach, A.; Brinker, N.; Kubicek, J.; Fabis, R.; Labahn, J.; Schäfer, F., Immobilized-metal affinity chromatography (IMAC): a review. Methods in enzymology 2009, 463, 439-473.
27. Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B., Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. Journal of the american chemical society 2004, 126 (11), 3392-3393.
28. Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y.-W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T., Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. Journal of the american chemical society 2006, 128 (33), 10658-10659.
29. Abdurachim, K.; Ellis, H. R., Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli. Journal of bacteriology 2006, 188 (23), 8153-8159.
30. Lai, Y.T.; Chang, Y.Y.; Hu, L.; Yang, Y.; Chao, A.; Du, Z.Y.; Tanner, J. A.; Chye, M.L.; Qian, C.; Ng, K.M., Rapid labeling of intracellular His-tagged proteins in living cells. Proceedings of the national academy of sciences 2015, 112 (10), 2948-2953.
31. Fischer, N. O.; Infante, E.; Ishikawa, T.; Blanchette, C. D.; Bourne, N.; Hoeprich, P. D.; Mason, P. W., Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent West Nile encephalitis. Bioconjugate chemistry 2010, 21 (6), 1018-1022.
32. Manivel, V.; Ramesh, R.; Panda, S. K.; Rao, K., A synthetic peptide spontaneously self-assembles to reconstruct a group-specific, conformational determinant of hepatitis B surface antigen. The journal of immunology 1992, 148 (12), 4006-4011.
33. Huang, Z.; Mason, H. S., Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium‐mediated transient expression system. Plant biotechnology journal 2004, 2 (3), 241-249.
34. Pang, H.; Lu, Q.; Zhang, Y.; Li, Y.; Gao, F., Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2010, 2 (6), 920-922.
35. Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F., Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced functional materials 2013, 23 (23), 2993-3001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top