|
1] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dynamical model of traffic congestion and numerical simulation. Physical review E, 51(2):1035, 1995. [2] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. SIAM, 1994. [3] K. Chang, L. Qi, and T. Zhang. A survey on the spectral theory of nonnegative tensors. Numerical Linear Algebra with Applications, 20(6):891–912, 2013. [4] K.C. Chang, K. Pearson, T. Zhang, et al. Perron-frobenius theorem for nonnegative tensors. Commun. Math. Sci, 6(2):507–520, 2008. [5] K.C. Chang, K.J. Pearson, and T. Zhang. Primitivity, the convergence of the nqz method, and the largest eigenvalue for nonnegative tensors. SIAM Journal on Matrix Analysis and Applications, 32(3):806–819, 2011. [6] K.C. Chang, K.J. Pearson, and T. Zhang. Some variational principles for z-eigenvalues of nonnegative tensors. Linear Algebra and its Applications, 438(11):4166–4182, 2013. [7] K.C. Chang and T. Zhang. On the uniqueness and non-uniqueness of the positive z-eigenvector for transition probability tensors. Journal of Mathematical Analysis and Applications, 408(2):525–540, 2013. [8] L. Chen, L. Han , and L. Zhou. Computing tensor eigenvalues via homotopy methods. SIAM Journal on Matrix Analysis and Applications, 37(1):290–319, 2016. [9] W.K. Ching, E.S. Fung, and M.K. Ng . Higher-order markov chain models for categorical data sequences. Naval Research Logistics (NRL), 51(4):557–574, 2004. [10] S.N. Chow, J. Mallet-Paret, and J.A. Yorke. Finding zeroes of maps: homotopy methods that are constructive with probability one. Mathematics of Computation, 32(143):887–899, 1978. [11] D. Chowdury, L. Santen, and A. Schadschneider. Statistical physics of vehicular traffic and some related systems. Physics Reports, 329(4):199–329, 2000. [12] V. Coscia, M. Delitala, and P. Frasca. On the mathematical theory of vehicular traffic flow ii: Discrete velocity kinetic models. International Journal of Non- Linear Mechanics, 42(3):411–421, 2007. [13] M. Delitala and A. Tosin. Mathematical modeling of vehicular traffic: a discrete kinetic theory approach. Mathematical Models and Methods in Applied Sciences, 17(06):901–932, 2007. [14] S. Friedland, S. Gaubert, and L. Han. Perron–frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra and its Applications, 438(2):738–749, 2013. [15] K.C. Gowda and E. Diday. Symbolic clustering using a new dissimilarity measure. pattern recognition, 24(6):567–578, 1991. [16] D. Helbing. Traffic and related self-driven many-particle systems. Reviews of modern physics, 73(4):1067, 2001. [17] S. Hu, Z.H. Huang, and L. Qi. Finding the spectral radius of a nonnegative tensor. arXiv preprint arXiv:1111.2138, 2011. [18] H.B. Keller. Lectures on numerical methods in bifurcation problems. Applied Mathematics, 217:50, 1987. [19] B.S. Kerner. Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer Science & Business Media, 2009. [20] Y.C. Kuo, W.W. Lin, and C.S. Liu. Continuation methods for computing z- /h-eigenpairs of nonnegative tensors. arXiv preprint arXiv:1702.05841, 2017. [21] W. Li and M.K. Ng. On the limiting probability distribution of a transition probability tensor. Linear and Multilinear Algebra, 62(3):362–385, 2014. [22] L.H. Lim. Singular values and eigenvalues of tensors: a variational approach. In Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, pages 129–132. IEEE, 2005. [23] C.S. Liu, C.H. Guo, and W.W. Lin. Newton–noda iteration for finding the perron pair of a weakly irreducible nonnegative tensor. Numerische Mathematik, pages 1–28, 2017. [24] T. Nagatani. The physics of traffic jams. Reports on progress in physics, 65(9):1331, 2002. [25] M. Ng, L. Qi, and G. Zhou. Finding the largest eigenvalue of a nonnegative tensor. SIAM Journal on Matrix Analysis and Applications, 31(3):1090–1099, 2009. [26] G. Ni, L. Qi, F. Wang, and Y. Wang. The degree of the e-characteristic polynomial of an even order tensor. Journal of Mathematical Analysis and Applications, 329(2):1218–1229, 2007. [27] Q. Ni and L. Qi. A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. Journal of Global Optimization, 61(4):627–641, 2015. [28] J. Peter, A.D. Richard, et al. Time series: theory and methods. Is, 1:60–61, 2001. [29] L. Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 40(6):1302–1324, 2005. [30] L. Qi. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis and Applications, 325(2):1363–1377, 2007. [31] L. Qi, W. Sun, and Y. Wang. Numerical multilinear algebra and its applications. Frontiers of Mathematics in China, 2(4):501–526, 2007. [32] L. Qi, Y. Wang, and E.X. Wu. D-eigenvalues of diffusion kurtosis tensors. Journal of Computational and Applied Mathematics, 221(1):150–157, 2008. [33] A.E. Raftery. A model for high-order markov chains. Journal of the Royal Statistical Society. Series B (Methodological), pages 528–539, 1985. [34] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinary, S.I. Tadaki, and S. Yukawa. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New journal of physics, 10(3):033001, 2008.
|