(3.238.7.202) 您好!臺灣時間:2021/03/03 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃馨儀
研究生(外文):Huang, Sin-Yi
論文名稱:製備具消毒效能之過氧化氫產生電極及操作優化
論文名稱(外文):Fabrication and operating optimization of electrodes for hydrogen peroxide generation with function of disinfection
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
口試委員:黃金寶胡啟章黃志彬
口試委員(外文):Huang, Chin-PaoHu, Chi-ChangHuang, Chih-Pin
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:電合成過氧化氫氣體擴散電極強氧化劑電化學分析消毒
外文關鍵詞:electrogenerated hydrogen peroxidegas diffusion electrodestrong oxidantelectrochemical analysisdisinfection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:342
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過氧化氫為強氧化劑亦屬於活性氧物質,可攻擊細胞之大分子物質如脂質、蛋白質及核酸,抑制細菌及病毒等微生物生長,且反應後的過氧化氫分解成水,為環境友善無危害之消毒劑。近年來廣泛以電化學合成過氧化氫,其中氣體擴散電極可有效利用氧氣以提高過氧化氫之合成效率,此方法相較於傳統蒽醌法,其合成步驟簡單且快速,但目前針對電極之化學組成及模組操作參數上之研究有限,使得氣體擴散電極於過氧化氫合成上更具有探討性。
本研究以製備具疏水及透氣性之電極作為電合成過氧化氫之工具為主軸,並評估其於殺菌上的應用。以混合不同碳黑(XC及ppy)與CS介孔性碳材,製成碳黑介孔碳氣體擴散電極 (carbon black@meso-carbon gas diffusion electrode, CBMC-GDE),探討不同化學組成之複合電極(XC72/CS與ppy/CS)對過氧化氫生成效能之影響,並藉由電化學分析優化模組操作參數(電流密度、電壓大小及電解液型態等),探討不同氧氣供應方式(陽極產氧、電解液之溶氧及自陰極擴散之氧)之過氧化氫合成效率,與過氧化氫生成時之限制反應物。
研究結果顯示,於定電壓模式,XC/CS複合電極具較好之過氧化氫產生效率;而於固定電流模式,ppy/CS相較XC/CS複合電極可產生較高之過氧化氫。模組操作參數之結果顯示,當陰極電壓控制在0.2 V時,電流效率可達83%;此外,當供應之電流密度小於20 mA/cm2時,有較好之電流效率;試驗中亦發現相較於使用Na2SO4, NaNO3及NaCl為電解液,於NaClO4為水溶液時可有效避免過氧化氫合成時之副反應產生,提高過氧化氫之生成效率。模組中之氧氣供應方式對過氧化氫生成速率影響為自陰極擴散優於僅靠電解液中之溶氧,而單純使用陽極產氧則最低,故此模組相較傳統電化學合成法可提高過氧化氫生成效能;綜觀上述,本研究所製備之CBMC-GDE具疏水及透氣性,可有效利用氧氣大幅提高過氧化氫之生成效能,且應用於消毒抗菌試驗上可達快速、簡單及有效之殺菌效果。
Hydrogen peroxide (H2O2) is a strong oxidant which is also known as a reactive oxygen species (ROS) and could be acted against bacteria and viruses by reacting with the thiol groups in lipids, proteins and nucleic acids. Moreover, H2O2 is an environmental compatibility and nonhazardous disinfectants because of its ultimate decomposition into water and oxygen. Recently, gas diffusion electrode (GDE), which is a gas-permeable material that can utilize oxygen efficiently, has been widely applied for H2O2 electrochemical generation. In addition, the synthesis step of GDE is demonstrated to be simpler and more rapid than that of the traditional anthraquinone oxidation (AO). However, little information is available in the field of electrode fabrication and operating optimization.
In this study, fabrication of the gas diffusion electrodes with gas-permeable and hydrophobic properties for H2O2 generation was carried out to evaluate its application for disinfection. The various carbon black, such as XC72 and ppy, was assemble with CS of meso-carbon to fabricate carbon black@meso-carbon gas diffusion electrode (CBMC-GDE). The efficiency of H2O2 generation with various chemical compositions of XC/CS and ppy/CS composite electrodes were investigated. Applied current densities, cathode voltages and electrolytes were optimized via electrochemical analysis for H2O2 generation. In addition, to investigate the H2O2 generation of restricted reactants and the H2O2 generated efficiency of various oxygen supplies including anodic generation, dissolved oxygen of electrolyte and diffusion from cathode.
The results show that XC/CS composite electrode generated a higher amount of H2O2 concentrations in the constant voltage mode, compared to ppy/CS composite electrode. In contrary, H2O2 generation by ppy/CS composite electrode was more pronounced in constant current mode, compared to XC/CS composite electrode. The results also show that the current efficiency was 83% when the applied voltage was 0.2 V at cathode. When the current density was less than 20 mA/cm2, current efficiency increased. We also found that the use of NaClO4 as electrolyte could effectively avoid the side reactions of H2O2 in contrast with Na2SO4, NaNO3 and NaCl. The effect of oxygen supplies for H2O2 generation rate in the following increasing order: anodic generation < dissolved oxygen of electrolyte < diffusion from cathode. In conclusion, the CBMC-GDE is a gas-permeable hydrophobic electrode which can utilize oxygen efficiently for H2O2 generation. Thus, the disinfection could be achieved quickly, simply and safely.
摘 要 i
Abstract iii
致 謝 v
目 錄 vii
表目錄 x
圖目錄 xi
第一章 前 言 1
第二章 文獻回顧 3
2.1 過氧化氫之合成及應用 3
2.1.1 過氧化氫之特性與應用 3
2.1.2 過氧化氫之合成方法 4
2.2 氣體擴散電極材料與機制 9
2.2.1 碳材於氣體擴散電極之應用 9
2.2.2 金屬氧化物於氣體擴散電極之應用 11
2.3 GDE模組操作參數之影響因子 12
2.4 GDE模組電化學反應 15
2.4.1 氣體擴散電極之電化學反應 16
2.4.2 影響電極反應速率之因素 17
2.4.3 電極電化學極化現象 18
2.4.4 電極反應動力學 19
第三章 研究方法 22
3.1 研究架構 22
3.2 實驗材料 24
3.3 氣體擴散電極製備 25
3.4 CBMC-GDE特性分析 26
3.4.1 元素特性分析 26
3.4.2 比表面積及孔洞特性分析 26
3.4.3 表面形態分析 27
3.4.4 親疏水性測量 27
3.4.5 過氧化氫濃度分析 28
3.4.6 電化學特性分析 30
3.5 CBMC-GDE模組設計與殺菌試驗 32
3.5.1 電合成過氧化氫模組設計 32
3.5.2 CBMC-GDE模組操作參數優化 32
3.5.3 模組電流效率及能源消耗評估 33
3.5.4 CBMC-GDE模組殺菌試驗 33
第四章 結果與討論 34
4.1 CBMC-GDE電極特性分析 34
4.1.1 化學組成 34
4.1.2 表面形態及孔洞結構 37
4.1.3 親疏水性 39
4.1.4 電化學特性分析 41
4.2 CBMC-GDE過氧化氫生成模組效能評估 46
4.2.1 不同陰極電壓 46
4.2.2 不同電流密度 49
4.2.3 電解液型態 51
4.2.4 氧氣供應方式 55
4.3 CBMC-GDE模組殺菌效力及電極穩定度 57
4.3.1 殺菌效力 57
4.3.2 電極穩定度 59
第五章 結論與建議 60
5.1 結論 60
5.2 建議 61
參考文獻 62
Alcaide, F., Brillas, E. and Cabot, P. L. S. (2003). "EIS analysis of hydroperoxide ion generation in an uncatalyzed oxygen-diffusion cathode." Journal of Electroanalytical Chemistry, 547, 61-73.
Asad, N. R., Asad, L. M. B. O., Almeida, C. E. B. D., Felzenszwalb, I., Cabral-Neto, J. B. and Leitão, A. C. (2004). "Several pathways of hydrogen peroxide action that damage the E. coli genome." Genetics and Molecular Biology, 27, 291-303.
Asghar, A., Raman, A. a. A. and Daud, W. M. a. W. (2015). "Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review." Journal of Cleaner Production, 87, 826-838.
Bag, S., Mondal, B., Das, A. K. and Raj, C. R. (2015). "Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction." Electrochimica Acta, 163, 16-23.
Baker, W. S., Long, J. W., Stroud, R. M. and Rolison, D. R. (2004). "Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts." Journal of Non-Crystalline Solids, 350, 80-87.
Block, S. S. (1983). Disinfection, sterilization and preservation, Lea & Febiger.
Campos-Martin, J. M., Blanco-Brieva, G. and Fierro, J. L. G. (2006). "Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process." Angewandte Chemie - International Edition, 45, 6962-6984.
Chai, X. S., Hou, Q. X., Luo, Q. and Zhu, J. Y. (2004). "Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method." Analytica Chimica Acta, 507, 281-284.
Cheng, H. and Scott, K. (2013). "Nano-structured gas diffusion electrode-A high power and stable cathode material for rechargeable Li-air batteries." Journal of Power Sources, 235, 226-233.
Da Pozzo, A., Petrucci, E. and Merli, C. (2008). "Electrogeneration of hydrogen peroxide in seawater and application to disinfection." Journal of Applied Electrochemistry, 38, 997-1003.
Daneshvar, N., Aber, S., Vatanpour, V. and Rasoulifard, M. H. (2008). "Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters." Journal of Electroanalytical Chemistry, 615, 165-174.
Dittmeyer, R., Grunwaldt, J. D. and Pashkova, A. (2015). "A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide." Catalysis Today, 248, 149-159.
Hammar, L. and Wranglén, G. (1964). "Cathodic and anodic efficiency losses in chlorate electrolysis." Electrochimica Acta, 9, 1-16.
Harada, K. (2002). "Behavior of hydrogen peroxide in electrolyzed anode water." Bioscience, Biotechnology, and Biochemistry, 66, 1783-1791.
Hasché, F., Oezaslan, M., Strasser, P. and Fellinger, T. P. (2016). "Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst." Journal of Energy Chemistry, 25, 251-257.
Hashem, M., El-Bisi, M., Sharaf, S. and Refaie, R. (2010). "Pre-cationization of cotton fabrics: An effective alternative tool for activation of hydrogen peroxide bleaching process." Carbohydrate Polymers, 79, 533-540.
He, W., Zou, J., Wang, B., Vilayurganapathy, S., Zhou, M., Lin, X., Zhang, K. H. L., Lin, J., Xu, P. and Dickerson, J. H. (2013). "Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement." Journal of Power Sources, 237, 64-73.
He, W., Lv, W. and Dickerson, J. H. (2014). "Gas Diffusion Mechanisms and Models." 9-17.
Huissoud, A. and Tissot, P. (1999). "Electrochemical reduction of 2-ethyl-9, 10-anthraquinone(EAQ) and mediated formation of hydrogen peroxide in a two-phase medium Part II : Production of alkaline hydrogen peroxide by the intermediate electroreduction of EAQ in a flow-by porous electrode in two phase liquid-liquid flow." Journal of Applied Electrochemistry, 29, 17-25.
Jiang, T., Wang, Y., Wang, K., Liang, Y., Wu, D., Tsiakaras, P. and Song, S. (2016). "A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction." Applied Catalysis B: Environmental, 189, 1-11.
Jousseaume, V., Morsli, M. and Bonnet, A. (2003). "XPS study of aged polyaniline films." Journal of Applied Polymer Science, 90, 3730-3736.
Kenney, B., Valdmanis, M., Baker, C., Pharoah, J. G. and Karan, K. (2009). "Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes." Journal of Power Sources, 189, 1051-1059.
Khataee, A. R., Safarpour, M., Zarei, M. and Aber, S. (2011). "Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters." Journal of Electroanalytical Chemistry, 659, 63-68.
Lee, K., Zhang, L., Lui, H., Hui, R., Shi, Z. and Zhang, J. (2009). "Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts." Electrochimica Acta, 54, 4704-4711.
Li, N., An, J., Zhou, L., Li, T., Li, J., Feng, C. and Wang, X. (2016). "A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems." Journal of Power Sources, 306, 495-502.
Liu, L., Lv, H., Wang, C., Ao, Z. and Wang, G. (2016). "Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection." Electrochimica Acta, 206, 259-269.
Liu, T., Wang, K., Song, S., Brouzgou, A., Tsiakaras, P. and Wang, Y. (2016). "New Electro-Fenton Gas Diffusion Cathode based on Nitrogen-doped Graphene@Carbon Nanotube Composite Materials." Electrochimica Acta, 194, 228-238.
Luo, H., Li, C., Wu, C., Zheng, W. and Dong, X. (2015). "Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode." Electrochimica Acta, 186, 486-493.
Luo, H., Li, C., Wu, C. and Dong, X. (2015). "In situ electrosynthesis of hydrogen peroxide with an improved gas diffusion cathode by rolling carbon black and PTFE." RSC Advances, 5, 65227-65235
Ma, Y., Wen, R., Qiu, J., Hong, J., Liu, M. and Zhang, D. (2015). "Biodegradation of nicotine by a novel strain Pusillimonas." Research in Microbiology, 166, 67-71.
Marković, N. M. and Ross Jr, P. N. (2002). "Surface science studies of model fuel cell electrocatalysts." Surface Science Reports, 45, 117-229.
Mcdonnell, G. and Russell, A. D. (1999). "Antiseptics and disinfectants: activity, action, and resistance." Clinical microbiology reviews, 12, 147-179.
Mckerracher, R. D., Alegre, C., Baglio, V., Aricò, A. S., Ponce De León, C., Mornaghini, F., Rodlert, M. and Walsh, F. C. (2015). "A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries." Electrochimica Acta, 174, 508-515.
Molina, J., Fernández, J., Del Río, A. I., Bonastre, J. and Cases, F. (2011). "Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW12O403− coating deposited on polyester fabrics." Applied Surface Science, 257, 10056-10064.
Nemanick, E. J. (2014). "Electrochemistry of lithium-oxygen batteries using microelectrode voltammetry." Journal of Power Sources, 247, 26-31.
Nishio, K., Molla, S., Okugaki, T., Nakanishi, S., Nitta, I. and Kotani, Y. (2015). "Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst." Journal of Power Sources, 278, 645-651.
Ouyang, L., Da, G. J., Tian, P. F., Chen, T. Y., Liang, G. D., Xu, J. and Han, Y. F. (2014). "Insight into active sites of Pd-Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2." Journal of Catalysis, 311, 129-136.
Panizza, M. and Cerisola, G. (2008). "Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air." 54, 876-878.
Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J., Rizzi, G. A., Martucci, A., Granozzi, G. and Gennaro, A. (2015). "Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide." Carbon, 95, 949-963.
Pi, K., Xia, M., Wu, P., Yang, M., Chen, S., Liu, D. and Gerson, A. R. (2015). "Effect of oxidative modification of activated carbon for the adsorption behavior of nicotine." Journal of Industrial and Engineering Chemistry, 31, 112-117.
Pottage, T., Richardson, C., Parks, S., Walker, J. T. and Bennett, A. M. (2010). "Evaluation of hydrogen peroxide gaseous disinfection systems to decontaminate viruses." Journal of Hospital Infection, 74, 55-61.
Qiang, Z., Chang, J. H. and Huang, C. P. (2002). "Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions." Water Research, 36, 85-94.
Ramalho, A. M. Z., Martínez-Huitle, C. A. and Silva, D. R. D. (2010). "Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates." Fuel, 89, 531-534.
Ramaswamy, N., Tylus, U., Jia, Q. and Mukerjee, S. (2013). "Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry." Journal of the American Chemical Society, 135, 15443-15449.
Reis, R. M., Beati, A. G. F., Rocha, R. S., Assumpcao, H. M. T., Santos, M. C., Bertazzoli, R. and Lanza, M. R. V. (2012). "Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor." Ind. Eng. Chem. Res, 51, 649-654.
Schröder, D., Laue, V. and Krewer, U. (2016). "Numerical simulation of gas-diffusion-electrodes with moving gas–liquid interface: A study on pulse-current operation and electrode flooding." Computers & Chemical Engineering, 84, 217-225.
Sellers, R. M. (1980). "Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate." The Analyst, 105, 950-950.
Semchyshyn, H. (2009). "Hydrogen peroxide-induced response in E. coli and S. cerevisiae: different stages of the flow of the genetic information." Open Life Sciences, 4, 142-153.
Senta, I., Gracia Lor, E., Borsotti, A., Zuccato, E. and Castiglioni, S. (2015). "Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment." Water Research, 74, 23-33.
Sharma, R. K., Rastogi, A. C. and Desu, S. B. (2008). "Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor." Electrochimica Acta, 53, 7690-7695.
Sheng, Y., Song, S., Wang, X., Song, L., Wang, C., Sun, H. and Niu, X. (2011). "Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film." Electrochimica Acta, 56, 8651-8656.
Song, C. and Zhang, J. (2008). "Electrocatalytic oxygen reduction reaction." PEM Feul Cell Electrocatalyst and Catalyst Layers. Fundamentals and Applications, 89-134.
Su, H., Pasupathi, S., Bladergroen, B., Linkov, V. and Pollet, B. G. (2013). "Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer." International Journal of Hydrogen Energy, 38, 11370-11378.
Su, H., Pasupathi, S., Bladergroen, B. J., Linkov, V. and Pollet, B. G. (2013). "Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique." Journal of Power Sources, 242, 510-519.
Tang, H., Yao, S., Jing, M., Wu, X., Hou, J., Qian, X., Rao, D., Shen, X., Xi, X. and Xiao, K. (2015). "Mg0.6Ni0.4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries." Journal of Alloys and Compounds, 650, 351-356.
Valim, R. B., Reis, R. M., Castro, P. S., Lima, A. S., Rocha, R. S., Bertotti, M. and Lanza, M. R. V. (2013). "Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support." Carbon, 61, 236-244.
Veldsink, J. W., Van Damme, R. M. J., Versteeg, G. F. and Van Swaaij, W. P. M. (1995). "The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media." The Chemical Engineering Journal and the Biochemical Engineering Journal, 57, 115-125.
Ward, J. F., Evans, J. W., Limoli, C. L. and Calabro-Jones, P. M. (1987). "Radiation and hydrogen peroxide induced free radical damage to DNA." Br J Cancer Suppl, 8, 105-112.
Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L. and Oturan, M. A. (2012). "Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode." Chemosphere, 87, 614-620.
Xia, G., Lu, Y. and Xu, H. (2015). "Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode." Electrochimica Acta, 158, 390-396.
Xia, H., Zhang, Y., Chen, C., Wu, W., Yao, K. and Zhang, J. (2016). "Ozone-mediated functionalization of multi-walled carbon nanotubes and their activities for oxygen reduction reaction." Journal of Materials Science & Technology, 32, 533-538.
Xu, M., Ivey, D. G., Xie, Z. and Qu, W. (2015). "Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement." Journal of Power Sources, 283, 358-371.
Zarei, M., Salari, D., Niaei, A. and Khataee, A. (2009). "Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode." Electrochimica Acta, 54, 6651-6660.
Zhang, Y., Gao, M. M., Wang, X. H., Wang, S. G. and Liu, R. T. (2015). "Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline." Electrochimica Acta, 182, 73-80.
Zhiani, M. and Majidi, S. (2014). "Effect of gas diffusion electrode pre-treatment by ultrasonic bath cleaning technique on proton exchange membrane fuel cell performance." International Journal of Hydrogen Energy, 39, 12870-12877.
Zhou, L., Hu, Z., Zhang, C., Bi, Z., Jin, T. and Zhou, M. (2013). "Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode." Separation and Purification Technology, 111, 131-136.
Zhu, C., Li, H., Fu, S., Du, D. and Lin, Y. (2016). "Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures." Chem. Soc. Rev., 2.
莊博堯,「電化學製備錳─鈷氧化物於電化學電容器的應用及成長機制研究」,國立中正大學,2004年。
黃雅君,「過渡金屬氧化物觸媒應用於鋅-空氣燃料電池陰極之研究」,國立交通大學,2003年。
葉慧君,「Pt-Pd合金奈米結構電極之製備」,南台科技大學,2004年。
劉奎府,「氧化銅催化劑應用於鋅-空氣燃料電池陰極之研究」,國立交通大學,2004年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔