|
1. Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Transactions on Graphics (SIGGRAPH Conference Proceedings). vol 35, no 4 2. Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. 2016. Shape Synthesis from Sketches via Procedural Models and Convolutional Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS. vol 23, no 8: 2003 - 2013 3. Liangliang Cao, Jianzhuang Liu, and Xiaoou Tang. 2008. What the back of the object looks like: 3D reconstruction from line drawings without hidden lines. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. vol 30, no 3: 507-517 4. Jianzhuang Liu, Yu Chen, and Xiaoou Tang. 2011. Decomposition of Complex Line Drawings with Hidden Lines for 3D Planar-Faced Manifold Object Reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). vol 33, no 1: 3-15 5. Tianfan Xue, Jianzhuang Liu, and Xiaoou Tang. 2012. Example-Based 3D Object Reconstruction from Line Drawings. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). vol 10: 302-309 6. Changqing Zou, Tianfan Xue, Xiaojiang Peng, Honghua Li, Baochang Zhang, Ping Tan, and Jianzhuang Liu. 2016. An example-based approach to 3D man-made object reconstruction from line drawings. Pattern Recognition. vol 60, no C: 543-553 7. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. Neural Information Processing Systems (NIPS). 8. Linjie Yang, Jianzhuang Liu, and Xiaoou Tang. 2013. Complex 3d general object reconstruction from line drawings. IEEE International Conference on Computer Vision (ICCV). 9. Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3D Shape Retrieval using Convolutional Neural Networks. 10. Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant architecture. ACM Transactions on Graphics (TOG). vol 22, no 3: 669-677 11. Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on Procedural Modelling for Virtual Worlds. Computer Graphics Forum. vol 33, no 6: 31-50 12. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mźch, O. Deussen, and B. Benes. 2014. Inverse procedural modelling of trees. Computer Graphics Forum. vol 33, no 6: 118-131 13. Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul Waddell. 2012. Inverse design of urban procedural models. ACM Transactions on Graphics (TOG). vol 31, no 6 14. Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3431-3440 15. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Neural Information Processing Systems 25 (NIPS 2012). 16. Giorgos Tolias, Ronan Sicre, and Hervé Jégou. 2015. Particular object retrieval with integral max-pooling of CNN activations. International Conference on Learning Representations (ICLR). vol abs/1511.05879, 17. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770 - 778 18. Ross Girshick. 2015. Fast R-CNN. IEEE International Conference on Computer Vision (ICCV). 1440 - 1448 19. J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. 2013. Selective search for object recognition. International Journal of Computer Vision. vol 104, no 2: 154-171 20. Matthew D Zeiler and Rob Fergus. 2013. Visualizing and understanding convolutional neural networks. European Conference on Computer Vision (ECCV). 21. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition. 580 - 587 22. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. vol 15: 1929-1958 23. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. MM '14 Proceedings of the 22nd ACM international conference on Multimedia.
|