跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃裕隆
研究生(外文):Huang, Yu-Long
論文名稱:基於低功率藍⽛通訊協定之無線多導極⼼電圖系 統的網路設計
論文名稱(外文):Network Design for Wireless Multi-leads ECG System Based on Bluetooth Low Energy
指導教授:趙禧綠趙禧綠引用關係
指導教授(外文):Chao, Hsi-Lu
口試委員:伍紹勳蘇柏齊曾理銘李榮和
口試日期:2017-1-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:網路工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:43
中文關鍵詞:無線⼼電圖系統低功率藍芽無線近⾝網路
外文關鍵詞:Wireless ECG systemBluetooth Low EnergyWireless Body Area Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
我們所設計並實作的無線多導極⼼電圖(Electrocardiography, ECG)系統,是由三
個ECG 導極、⼀個低功率藍⽛閘道器(Bluetooth Low Energy gateway, BLE gateway),
以及Google 雲端平台所組成。在這種架構下,三個ECG 導極扮演從屬節點(slave),
⽽低功率藍⽛閘道器則是主控節點(master),他們會形成⼀組無線近⾝網路(Wireless
Body Area Network, WBAN)。為了形成無線近⾝網路,我們以低功率藍芽通訊協定
為基礎設計了無線近⾝網路的網路架構,將主控節點的時間資源劃分成許多⻑度相同
的superframe,每個superframe 分成兩個階段,分別為控制階段和資料階段。在控制
階段中,主控節點會和ECG 導極建⽴連線形成無線近⾝網路,接著在資料階段,主控
節點除了會使⽤輪詢機制(polling)來接收每個ECG 導極所擷取的⼼電訊號之外,還
會和ECG 導極進⾏時間同步。由於控制階段分配的時間多寡,會影響主控節點在⼀個
superframe 中可以和多少數量的無線近⾝網路建⽴連線,因此,如何有效分配這兩段
時間是⼀項重要的議題。為了有效分配這兩段時間,我們設計了分析模型來分析低功
率藍⽛建⽴連線所需時間,並使⽤MATLAB 軟體來模擬低功率藍⽛的環境,將低功率
藍⽛建⽴連線所需時間之模擬結果,與我們的分析結果⽐較之後,誤差率約為2%-3%,
因此我們的分析結果是相當精準的。接著透過演算法分配這兩段時間,並計算出主控
節點可以容納的無線近⾝網路個數,也就是低功率藍⽛閘道器最⼤可服務⼈數。
A 100 percent wireless electrocardiography (ECG) system is prototyped and presented
in this paper. Our wireless ECG system is composed of three wireless ECG sensor patches,
a Bluetooth Low Energy (BLE) gateway, and a Google cloud platform. In this network
architecture, the three ECG sensor patches which act as slaves and the BLE gateway
which acts as master form a wireless body area network (WBAN). To archive this, time
resource of master split into two phases: control phase and data phase. Master establishes
connections with slaves to form the WBAN in the control phase and performs time
synchronization as well as sensing data collection in the data phase. However, there is a
challenge on time allocation between control phase and data phase, because the interval
of control phase affects the number of WBAN which master can connect in a superframe.
Therefore, we design an analysis model to analyze the connection delay of slaves in control
phase to allocate time resource effectively. We use MATLAB to simulate the environment
of Bluetooth Low Energy, and then compare the simulation results with our analysis results.
Our analysis results are accurate because the error rate is 2%-3%. Finally, we can
obtain the number of connected WBAN by time allocation algorithm after we get the
connection delay from analysis model.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
表⽬錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖⽬錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
第⼀章簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
第⼆章無線多導極⼼電圖系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 ECG 導極和低功率藍⽛閘道器. . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Google 雲端平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第三章無線近⾝網路之網路設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 無線近⾝網路介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 網路設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 無線近⾝網路之形成. . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 無線近⾝網路之輪詢機制. . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 無線近⾝網路之同步機制. . . . . . . . . . . . . . . . . . . . . . . 17
第四章問題描述與解決⽅法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 控制階段的分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 系統架構及參數定義. . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 分析模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 資料階段的分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 時間分配之演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
iv
第五章模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Emulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.1 實際的參數配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 實驗⼀:Master 的記憶體⼤⼩. . . . . . . . . . . . . . . . . . . . . 38
5.3.3 實驗⼆:Slave 的記憶體⼤⼩. . . . . . . . . . . . . . . . . . . . . . 39
5.3.4 實驗三:Slave 的sample rate . . . . . . . . . . . . . . . . . . . . . . 39
第六章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
[1] D. D. Finlay, C. D. Nugent, J. G. Kellett, M. P. Donnelly, P. J. McCullagh, and
N. D. Black, “Synthesising the 12-lead electrocardiogram: Trends and challenges,”
European Journal of Internal Medicine, vol. 18, pp. 566–570, 2007.
[2] Bluetooth core specification version 4.2. Bluetooth SIG, Dec. 2014.
[3] I. Ida, T. Kikuzuki, T. Ninomiya, M. Katoh, K. Kasai, M. Yoshida, and J. Takagi,
“Realizing safe and reliable vital sings monitoring with wireless body area networks,”
IEEE Human Technology Conference(HTC), Aug. 2013.
[4] B. R. Nandkishor, A. Shinde, and P. Malathi, “Android smartphone based body
area network for monitoring and evaluation of medical parameters,” International
Conference on Networks & Soft Computing, 2014.
[5] Https://glneurotech.com/bioradio/.
[6] Http://lifesynccorp.com/products/wireless-ecg-system.
[7] Http://www.arknavgps.com.tw/tracking/product/wireless-ecg.php.
[8] Http://yofa-biotech.weebly.com/28961322182451538651222943602829255ecg.html.
[9] Https://www.getqardio.com/qardiocore-wearable-ecg-ekg-monitor-iphone/.
[10] Http://www.biomedsys.com/truvue-wireless-ecg-monitoring.html.
[11] Http://www.shimmersensing.com/shop/shimmer3-ecg-unit.
[12] Http://www.aerotel.com/en/products-and-solutions/heartline-ecg-monitoring/heartviewp128-
bt.html.
[13] S. Misra and S. Sarkar, “Priority-based time-slot allocation in wireless body area
networks during medical emergency situations: An evolutionary game-theoretic perspective,”
IEEE Journal of Biomedical and Health Informatics, vol. 19, May 2015.
[14] W. Dargie and J. Wen, “A mac protocol for medical applications,” International
Symposium on Information Processing in Sensor Networks(IPSN), Apr. 2014.
[15] S. Yoo, C. J. Chen, and P. H. Chou, “Low-complexity, high-throughput multipleaccesswireless
protocol for body sensor networks,” International Workshop on Wearable
and Implantable Body Sensor Networks, Jun. 2009.
[16] L. Yang, C. Li, Y. Song, and X. Yuan, “An energy-efficient 2r mac based on ieee
802.15.6 for health monitoring,” 2015 IEEE Globecom Workshops, Dec. 2015.
[17] J. Liu, C. Chen, and Y. Ma, “Modeling neighbor discovery in bluetooth low energy
networks,” IEEE Communications Letters, vol. 16, no. 9, pp. 1439–1441, Dec. 2012.
[18] J. Liu, C. Chen, Y. Ma, and Y.Xu, “Energy analysis of device discovery for bluetooth
low energy,” IEEE Vehicular Technology Conference, Dec. 2013.
[19] K. Cho, C. Jung, J. Kim, Y. Yoon, and K. Han, “Modeling and analysis of performance
based on bluetooth low energy,” IEEE Latin-American Conference, Dec.
2015.
[20] K. Cho, W. Park, M. Hong, G. Park, W. Cho, J. Seo, and K. Han, “Analysis of
latency performance of bluetooth low energy (ble) networks,” Sensors, vol. 15, no.
1, pp. 59–78, 2015.
[21] J. Liu, C. Chen, Y. Ma, and Y.Xu, “Adaptive device discovery in bluetooth low
energy networks,” IEEE Vehicular Technology Conference, Jun. 2013.
[22] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong, “Performance analysis of neighbor
discovery process in bluetooth low energy networks,” IEEE Transactions on
Vehicular Technology, Apr. 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top