跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方思婷
研究生(外文):Fang, Ssu-Ting
論文名稱:補充益生菌前後在毛髮中有害元素含量的變化
論文名稱(外文):The Concentration Changes of Toxic Elements in Hair After Taking Probiotics
指導教授:盧鴻興盧鴻興引用關係
指導教授(外文):Lu, Henry Horng-Shing
口試委員:王秀瑛陳榮治盧鴻興
口試委員(外文):Wang, Hsiu-YingChen, Jung-ChihLu, Henry Horng-Shing
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:34
中文關鍵詞:益生菌有害元素濃度的變化量
外文關鍵詞:ProbioticsConcentration changes of toxic elements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
隨著不同環境、地區,或多或少存在著各種有害元素,而人們經長時間接觸,使體內累積越來越多的毒性物質,造成身體健康的危害。近年來,許多研究,積極尋找適當的功能性食品(益生菌),使用於環境、動物、人體中,探討特定益生菌對於有害元素的排除能力。而本研究屬於回溯性研究,討論參與者補充至少半年以上的益生菌是否有助於降低其毛髮中有害元素的濃度。本研究共收集三百一十九筆參與者資料,其中參與者長期補充五種菌株(L. paracasei BRAP-01, B. longum BR022, L. acidophilus AD300, L. reuteri BR101, L. rhamnosus AD500)之任一益生菌菌株,並分別在補充益生菌前後皆有檢測毛髮中六種有害元素(鎘、水銀、鉛、鈹、砷、鋁) 濃度。研究樣本資料包含「性別」、「年紀」、「疾病(癌症、糖尿病、高血壓)」,統計檢定方法使用「exact McNemar’s test」、「(exact) Wilcoxon signed-rank test」、「regression tree」。重要的研究結果如下:(1)第一次檢測毛髮中水銀與鈹濃度不正常的人數經過半年補充益生菌,毛髮中有害元素濃度不正常之人數顯著降低。(2)經過至少半年補充益生菌,水銀與鈹在毛髮中的濃度顯著下降。(3)在搜尋的相關文獻中,未發現任一益生菌能顯著降低鈹濃度,因此本篇可能是第一個提出益生菌能夠顯著降低鈹濃度的研究。本研究結果,希望能提供相關研究領域對於有害元素的排除參考。
There are toxic elements in different environments. As these toxic elements accumulate, they might compromise one’s health. In past literatures, people are actively looking for appropriate functional food (probiotics) which is used in decreasing the concentration of toxic elements in environments, animals or human bodies. This retrospective study focuses on whether taking more specific probiotic strain for at least six months can help significantly decreasing the concentration of toxic elements in one’s hair. There are in total 319 participants for five probiotic strains (L. paracasei BRAP-01, B. longum BR022, L. acidophilus AD300, L. reuteri BR101, L. rhamnosus AD500). A concentration of six toxic elements (Cadmium (Cd), Mercury (Hg), Lead (Pb), Beryllium (Be), Arsenic (As), and Aluminum (Al)) have been detected in all the participants before and after taking probiotics. The factors of this study include gander, age, and disease (cancer, diabetes, and hypertension). The statistical methods for the study are exact McNemar’s test, (exact) Wilcoxon signed-rank test, and regression tree. The summary of the conclusions for this study are: (1) For those previously detecting an abnormal concentration of Hg and Be, a significant decrease in the number of patients has been observed after taking probiotics. (2) Taking probiotic for at least six months can significantly decreases the concentration of Hg and Be. (3) Since no literature indicates that taking probiotics can obviously decrease the concentration of Be in one’s hair, thus this research might be the first to claim this fact. The result of the study will benefit relevant researches in the future.
摘要 ... ii
ABSTRACT ... iii
誌謝 ... iv
Contents ... v
List of Tables ... vii
List of Figures ... viii
Chapter 1 Introduction ... 1
1.1 Background ... 1
1.2 Motivation ... 2
1.3 Objectives ... 2
1.4 Organization of this thesis ... 3
Chapter 2 Literature Reviews ... 4
2.1 In vitro experiments ... 4
2.2 In animal experiments ... 4
Chapter 3 Materials and Methods ... 6
3.1 Participants ... 6
3.2 Toxic elements ... 7
3.2.1 Six toxic elements ... 7
3.2.2 Analysis of the toxic elements in hair ... 7
3.3 Personalized probiotics ... 8
3.3.1 Helper T cell and cytokine ... 9
3.3.2 The steps of selecting personalized probiotics ... 10
3.4 Statistical methods ... 10
3.4.1 Exact McNemar’s test ... 10
3.4.2 Wilcoxon signed-rank test ... 11
3.4.3 Regression tree ... 12
Chapter 4 Results ... 13
4.1 Basic information about detecting the concentration of toxic elements in hair ... 14
4.2 Changes in the number of people with an abnormal concentration of toxic elements ... 16
4.3 The changes of concentration of toxic elements ... 18
4.3.1 By taking probiotic strain only ... 18
4.3.2 By taking probiotic strain in gender ... 19
4.3.3 By taking probiotic strain in age ... 21
4.3.4 By taking probiotic strain in diseases ... 23
4.4 The concentration decreasing effects in specific group of regression tree ... 25
Chapter 5 Discussion ... 29
Chapter 6 Conclusions ... 31
References ... 32
[1]Lee, B. H. and Daliri, E. B. M. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4, 56-65.
[2]Iqbal, M. Z., Qadir, M. I., Hussain, T., Janbaz, K. H., Khan, Y. H. and Ahmad, B. (2014). Review: Probiotics and their beneficial effects against various diseases. Pak. J. Pharm. Sci., 27, 405-415.
[3]Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T. and Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164, 701-709.
[4]Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K. and Wei, M.Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112, 1193-1206.
[5]Magdalena, P. B., Dominik, S. and Adam W. (2014). Biosorption of Al+3and Cd+2 by an Exopolysaccharide from Lactobacillus rhamnosus. Journal of Food Science, 79(11), T2404-T2408.
[6]Halttunen, T., Salminen S. and Tahvonen R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114, 30-35.
[7]Yu, L., Zhai, Q., Yin, R., Li, P., Tian, F., Liu, X., Zhao, J., Gong, J., Zhang, H. and Chen, W. (2017). Lactobacillus plantarum CCFM639 Alleviate Trace Element Imbalance-Related Oxidative Stress in Liver and Kidney of Chronic Aluminum Exposure Mice. Biological Trace Element Research, 176, 342-349.
[8]Zhai, Q., Wang, G., Zhao, J., Liu, X., Tian, F., Zhang, H. and Chen, W. (2013). Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Cadmium Toxicity in Mice. Applied and Environmental Microbiology, 79(5), 1508-1515.
[9]Zhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H. and Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110, 501-513.
[10]Majlesi, M., Shekarforoush, S. S., Ghaisari, H. R., Nazifi, S., Sajedianfard, J. and Eskandari, M. H. (2017). Effect of Probiotic Bacillus Coagulans and Lactobacillus Plantarum on Alleviation of Mercury Toxicity in Rat. Probiotics & Antimicro. Prot.
[11]Jahromi, M. F., Liang, J. B., Ebrahimi, R., Soleimani, A. F., Rezaeizadeh, A., Abdullah, N. and Shokryazdan, P. (2016). Protective potential of Lactobacillus species in lead toxicity model in broiler chickens. The Animal Consortium, 1-7.
[12]Bisanz, J. E., Enos, M. K., Mwanga, J. R., Changalucha, J., Burton, J. P., Gloor, G. B. and Reid, G. (2014). Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children. mBio, 5(5), e01580-14.
[13]Agency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
[14]Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K.N. (2014). REVIEW ARTICLE: Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol, 7(2), 60–72.
[15]Tchounwou , P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133-164.
[16]Agency for Toxic Substances and Disease Registry (ATSDR). (1999). Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
[17]Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological Profile for lead (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.
[18]Agency for Toxic Substances and Disease Registry (ATSDR). (2002). Toxicological Profile for Beryllium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
[19]Agency for Toxic Substances and Disease Registry (ATSDR). (2015). Addendum to the toxicological profile for beryllium. Atlanta, GA 30329-4027, Division of Toxicology and Human Health Sciences.
[20]Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological Profile for Arsenic (Update). Atlanta, GA: U.S. Department of Health and Human Services. Public Health Service.
[21]Agency for Toxic Substances and Disease Registry (ATSDR). (2008). Toxicological Profile for Aluminum. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
[22]Ryo, K., Ito, A., Takatori, R., Tai, Y., Tokunaga, J., Arikawa, K., Yamada, T., Shinpo, K., Yasuda, H., and Saito, I. (2010) Correlation between mercury concentrations in hair and dental amalgam fillings. Anti-Aging Medicine, 7(3), 14-17.
[23]Kirch, W. and SpringerLink. (2008). Encyclopedia of Public Health [electronic Resource], Springer eBooks.
[24]Lovric, M. and SpringerLink. (2011). International Encyclopedia of Statistical Science [electronic Resource], Springer eBooks.
[25]Berk, R. and SpringerLink. (2016). Statistical Learning from a Regression Perspective, Springer eBooks.
[26]Zoghi, A., Khosravi-Darani, K. and Sohrabvandi, S. (2014). Surface Binding of Toxins and Heavy Metals by Probiotics. Mini-Reviews in Medicinal Chemistry, 14, 84-98.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top