|
[1] Achenbach E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 x 106. J. Fluid Mech. 1968; 34: 625–639. [2] Achenbach E, Heinecke E. On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6× 103 to 5× 106. J. Fluid Mech. 1981; 109:239–251. [3] Bimbato, AM, Pereira LAA, Hirata MH. Study of the vortex shedding flow around a body near a moving ground. J. Wind Eng. Ind. Aerodyn. 2011; 99(1): 7-17. [4] Blevins RD. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., New York, 1984, 568 p. [5] Bouscasse B, Golagrossi A, Marronea S, Souto-Iglesias A. SPH modeling of viscous flow past a circular cylinder interacting with a free surface. Computers & Fluids 2017; 146: 190-212. [6] Cabot W, Moin P. Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbulence and Combustion 2000; 63: 269-291. [7] Catalano P, Wang M, Iaccarino G, Moin P. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow 2003; 24 (4): 463-469. [8] Chu C-R, Chung C-H, Wu T-R, Wang C-Y. Numerical analysis of free surface flow over a submerged rectangular bridge deck. Journal of Hydraulic Engineering 2016; 142 (12): 10.1061/(ASCE)HY.1943-7900.0001177. [9] Deardorff JW. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970; 41: 453-480. [10] DeLong M. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A. 1997. [11] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 1981; 39(1): 201-225. [12]Hoerner SF. Fluid Dynamic Drag: Theoretical, Experimental and Statistical Information. Hoerner Fluid Dynamics, New Jersey. 1965. [13] Liang H, Zong Z, Zou L, Zhou L, Sun L. Vortex shedding from a two-dimensional cylinder beneath a rigid wall and a free surface according to the discrete vortex method. European Journal of Mechanics-B/Fluids 2014; 43: 110-119. 20 [14] Lin M-Y. and Huang L-H. Free-surface flow past a submerged cylinder. J. of Hydrodynamic 2010; 22 (5): 209-214. [15] Lloyd TP, and M. James. Large eddy simulations of a circular cylinder at Reynolds numbers surrounding the drag crisis. Applied Ocean Research 59 (2016): 676-686. [16] O’Neil J. and Meneveau C. Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech., 1997; 349: 253-293. [17] Reichl P, Hourigan K, Thompson MC. Flow pass a cylinder close to a free surface. J. Fluid Mech 2005; 533: 269-296. [18] Roshko A. Perspectives on bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 1993; 49: 79-100. [19] Schlichting H. Boundary Layer Theory, McGraw-Hill Inc., New York, 1979, p.817. [20] Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Review 1963; 91: 99-164. [21] Warschauer KA, Leene JA. Experiments on mean and fluctuating pressures of circular cylinders at cross flow at very high Reynolds numbers. In: Proc. Int. Conf. on Wind Effects on Buildings and Structures, Tokyo, Japan (see also Zdravkovich 1997), 1971; 305–315. [22] Williamson CHK. Vortex dynamics in the cylinder wake. Annu Rev. Fluid Mech. 1996; 28: 477-539. [23] Wu T-R, Chu C-R, Huang C-J, Wang C-Y, Chien S-Y, Chen M-Z. A two-way coupled simulation of moving solids in free-surface flows. Computers and Fluids. 2014; 100: 347-355.
|