Agrawal, G., “Geotechnical data analysis: prediction and modeling using a neural-fuzzy methodology,” Ph.D. Dissertation, Department of Civil Engineering, Purdue University, Indiana (1992).
Aldrich, C., Reuter M. A., and Deventer, J. S. J., “The application of neural nets in the metallurgical industry,” Mineral Engineering, Vol. 7, pp.793-809 (1994).
Alvarez Grima, M., Neuro-Fuzzy Modeling in Engineering Geology – Applications to mechanical rock excavation, rock strength estimation, and geological mapping, A.A. Balkema, Rotterdam, pp. 46-48 (2000).
Andrus, R. D., and Stokoe, K. H., “Liquefaction resistance based on shear wave velocity,” Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, U.S.A., pp. 89-128 (1997).
Baziar, M. H. and Nilipour, N., “Evaluation of liquefaction potential using neural-network and CPT results,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 7, pp. 631-636 (2003).
Boulanger, R. W., Mejia, L. H. and Idriss, I. M., “Liquefaction at Moss Landing during Loma Prieta earthquake,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No.5, pp.453-467 (1997).
Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder, L. F., Kayen, R. E., and Moss, R. E. S., “Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No.12, pp. 1314-1340 (2004).
Cybenko, G., “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, Vol.2, pp. 303-314 (1989).
Garson, G. D., “Interpreting neural-network connection weights,” AI Expert, Vol.6, No.4, pp.47-51 (1991).
Garson, G. D., Neural Networks An Introduction Guide for Social Scientists, SAGE Publications, London, pp. 105-109 (1998).
Gevrey, M., Dimopoulos, I. and Lek, S., “Review and comparison of methods to study the contribution of variables in artificial neural network models,” Ecological Modelling, No. 160, pp. 249-264 (2003).
Goh, A. T. C., “Back-propagation neural networks for modeling complex systems,” Artificial Intelligence in Engineering, Vol.9, pp.143-151 (1995).
Goh, A. T. C., “Neural network modeling of CPT seismic liquefaction data,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No.1, pp.70-73 (1996).
Goh, A. T. C., “Seismic liquefaction potential assessed by neural networks,” Journal of Geotechnical Engineering, ASCE, Vol. 120, No.9, pp.1467-1480 (1994).
Goh, A.T. C., “Probabilistic neural network for evaluating seismic liquefaction potential,” Canadian Geotechnical Journal, Vol. 39, pp.219-232 (2002).
Green, R. A., Cubrinovski, M., Cox, B., Wood, C., Wotherspoon, L., Bradley, B., and Maurer, B., “Select liquefaction case histories from the 2010-2011 Canterbury earthquake sequence,” Earthquake Spectra, Vol. 30, No. 1, pp.131-153 (2014).
Haykin, S., Neural Networks A Comprehensive Foundation, Prentice Hall, New Jersey, pp. 38-44 (1999).
Hornik, K., Stinchcombe, M., and White, H., “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Networks, Vol.3, pp.551-560 (1991).
Idriss, I. M., and Boulanger, R. W., “SPT-based liquefaction triggering Procedures,” Report No. UCD/CGM-10/02, Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, University of California at Davis, U.S.A., pp. 27-28 (2010).
Idriss, I. M., and Boulanger, R. W., “Examination of SPT-based liquefaction triggering correlations,” Earthquake Spectra, Vol. 28, No. 3, pp. 989-1018 (2012).
Juang, C.H., Chen, C.J., Jiang, T., and Andrus, R.D., "Risk-based liquefaction potential evaluation using standard penetration tests," Canadian Geotechnical Journal, Vol. 37, No. 6, pp. 1195-1208, (2000).
Juang, C. H., Chen , C. J., and Jiang, T., “Probabilistic framework for liquefaction potential by shear wave velocity,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No.8, pp.670-678 (2001).
Juang, C. H., Chen, C. J., and Tien, Y. M., “Appraising CPT-based liquefaction resistance evaluation methods - artificial neural network approach,” Canadian Geotechnical Journal, Vol.36, pp.443-454 (1999a).
Juang, C. H., Rosowsky, D. V., and Tang, W. H., “Reliability-based method for assessing liquefaction potential of soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No.8, pp.684-689 (1999b).
Le Cun, Y., “Une procedure d’apprentissage pour reseau a seuil assymetrique,” Cognitiva, Vol. 85, pp.599-604 (1985).
Lee, C. J. and Hsiung, T. K., “Applying neural network model in seismic liquefaction case analysis: probabilistic neural network model v.s. multilayer perceptrons model,” Proceedings of Joint 2nd International Conference on Soft Computing and Intelligent Systems and 5th International Symposium on Advanced Intelligent Systems, Yokohama, Japan, TUP-6-1.pdf in CD-ROM (2004).
Lee, C. J. and Hsiung, T.K., “Sensitivity analysis on a multilayer perceptron model for recognizing liquefaction cases,” Computers and Geotechnics, Vol.36, pp.1157-1163 (2009).
Liao, S.S.C., “Statistical modelling of earthquake-induced liquefaction,” Ph.D. Dissertation, Department of Civil Engineering, Massachusetts Institude of Technology, Cambridge, MA (1986).
Lu, M., AbouRizk, S.M., and Hermann, U.H., “ Sensitivity analysis of neural networks in spool fabrication productivity studies,” Journal of Computing in Civil Engineering, ASCE, Vol. 15, No. 4, pp.299-308 (2001).
Montano, J. J., and Palmer, A., “Numeric sensitivity analysis applied to feedforward networks,” Neural Computing and Applications, Vol. 12, pp.119-125 (2003).
Ng, W. W. Y., Yeung, D. S., Wang, X. Z., and Cloete, I., “A study of the difference between partial derivative and stochastic neural network sensitivity analysis for applications in supervised pattern classification problems,” Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, pp. 26 – 29 (2004).
Noble, S. K., and Youd, T. L., “Probabilistic evaluation of soil liquefaction resistance,” Technical Report CEG-98-02, with 77 plus appendices, Department of Civil and Environmental Engineering, Brigham Young University, Provo, Utah, U.S.A. (1999).
Oh, S. H., and Lee, Y., “Sensitivity analysis of single hidden-layer neural networks with threshold functions,” IEEE Transactions on Neural Networks, Vol. 6, No. 4, pp. 1005-1007 (1995).
Olden, J. D., and Jackson, D. A., “Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks,” Ecological Modelling, No. 154, pp.135-150 (2002).
Olden, J. D., Joy, M. K., and Death, R. G., “An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data,” Ecological Modelling, No. 178, pp.389-397 (2004).
Özesmi,S.L., and Özesmi,U., “An artificial neural network approach to spatial habitat modeling with interspecific interaction,” Ecological Modelling, No. 116, pp.15-31 (1999).
Parker, D.B., “Learning-logic: casting the cortex of the human brain in silicon," Technical Report TR-47, Center for Computational Research in Economics and Management Science, Cambridge, MA, U.S.A. (1985).
Rumelhart D. E., Hinton, G. E., and Williams, R. J., “Learning representations by back-propagating errors,” Nature, Vol.323, pp. 533-536 (1986a).
Rumelhart D. E., Hinton, G. E., and Williams, R. J., “Learning internal representations by error propagation,” Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1 , Cambridge, MA: MIT Press, pp. 318-362 (1986b).
Seed, H.B., and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273 (1971).
Seed, H.B., Tokimatsu, K., Harder L.F., and Chung, R.M., “Influence of SPT procedures in soil liquefaction resistance evaluations,” Journal of Geotechnical Engineering, ASCE, Vol.111, No. 12, pp. 1425-1445 (1985).
Stevenson, M., Winter, R., and Widrow, R., “Sensitivity of feedforward neural networks to weight errors,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 71-80 (1990).
Tchaban, T., Taylor, M. J., and Griffin, A., “Establishing impacts of the inputs in a feedforward network,” Neural Computing and Applications, Vol. 7, pp. 309-317 (1998).
Tokimatsu, K., and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74 (1983).
Toprak, S., Holzer, T. L., Bennett, M. J., and Tinsley III, J. C., “CPT- and SPT-based probabilistic assessment of liquefaction potential,” Proceedings of the Seventh U.S.-Japan Workshop on Earthquake Resistance Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, Seattle, U.S.A., pp. 69-86 (1999).
Werbos, P.J., “Beyond regression: new tools for prediction and analysis in the behavioral sciences,” Ph.D. Dissertation, Harvard University, Cambridge, MA (1974).
Yang, J., Zeng, X., and Zhong, S., “Computation of multilayer perceptron sensitivity to input perturbation,” Neurocomputing, Vol. 99, pp. 390-398 (2013).
Yang, S. S., Ho, C. L., and Siu, S., “Computing and analyzing the sensitivity of MLP due to the errors of the i.i.d. inputs and weights based on CLT,” IEEE Transactions on Neural Networks, Vol. 21, No. 12, pp. 1882-1891 (2010).
Yang, Y., and Zhang, Q., “A hierarchical analysis for rock engineering using artificial neural networks,” Rock Mechanics and Rock Engineering, Vol. 30, No. 4, pp.207-222 (1997).
Yeh, I. C., and Cheng, W. L., “First and second order sensitivity analysis of MLP,” Neurocomputing, Vol. 73, pp. 2225-2233 (2010).
Youd, T. L., and Idriss, I. M., Proceedings of the NCEER Workshop on Evaluation of Liquefacion Resistance of Soils, Technical Report NCEER-97-0022 (1997).
Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Roberson, P. K., Seed, R. B., and Stokoe, K. H., “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817-833 (2001).
Youd, T. L. and Noble, S. K., “Liquefaction criteria based on probabalistic analyses, “ Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, U.S.A., pp. 201-216 (1997).
Zurada, J. M., Malinowski, A., and Cloete, I., “Sensitivity analysis for minimization of input data dimension for feedforward neural network,” Proceedings of IEEE International Symposium on Circuits and Systems, London, UK, pp. 447-450 (1994).
Zurada, J. M., Malinowski, A., and Usui, S., “Perturbation method for deleting redundant inputs of perceptron networks,” Neurocomputing, Vol. 14, pp. 177-193 (1997).
李崇正、熊大綱,「應用機率式神經網路模式分析土壤液化潛能」,2004海峽兩岸地工技術/岩土工程交流研討會論文集,臺北,第133-139頁 (2004)。
吳偉特,「臺灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39-70頁 (1979)。林昇甫、洪成安,神經網路入門與圖樣辨識,全華科技圖書股份有限公司,臺北,第 69 - 72頁 (1996)。
徐明同,「台灣之大地震—1644年至現在」,氣象學報,第二十六卷,第三期,第32-48頁 (1980)。
翁作新、陳正興、黃俊鴻,「國內土壤受震液化問題之檢討」,地工技術,第100期,第63-78頁(2004)。黃俊鴻、陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁(1998)。黃俊鴻、楊志文,「以集集地震案例資料建立土壤臨界液化強度曲線」,中國土木水利工程學刊,第13卷,第2期,第339-352頁(2001)。黃俊鴻、楊志文,「以集集地震案例探討現有SPT-N液化評估方法之適用性」,地工技術,第98期,第79-90頁(2003)。