跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王立原
研究生(外文):Li-Yuan Wang
論文名稱:應用區別分析方法探討西北太平洋雙眼牆颱風生成因子
論文名稱(外文):Applying Discriminant Analysis Method to Investigate the Formation Factors of Concentric Eyewall Typhoons in the Western North Pacific
指導教授:劉振榮劉振榮引用關係
指導教授(外文):Gin-Rong Liu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:雙眼牆颱風區別分析海氣參數
外文關鍵詞:concentric eyewalldiscriminant analysisair-sea parameter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
根據Hawkins and Helveson (2004)的研究,西北太平洋的強烈颱風有80%都歷經雙眼牆結構,為全球形成雙眼牆數量最多的區域。本研究利用ECMWF Interim再分析資料與SSMI微波衛星反演之合成熱能,以區別分析之統計方法分析2000年至2011年間西北太平洋之有雙眼牆的颱風(18個)與無雙眼牆的強烈颱風(18個),得出區別分析的分類結果,以及各環境參數的貢獻量,接著對2012年至2015年的颱風做驗證。
所使用的環境參數為850hPa相對渦度、850hPa相對濕度、200hPa輻散場、850hPa-200hpa垂直風切、海洋表層溫度、合成熱能等六項。2000年至2011年個案的分類結果之正確分類率為80.6%,且區別能力達顯著水準,而貢獻量較大的參數依序為850hPa-200hPa垂直風切、850hPa相對渦度、合成熱能。
接著設定區別分數閾值,並對2012年至2015年強度曾達到中颱等級的颱風做驗證,分類結果之正確分類率為82%,且平均可在衛星觀測到雙眼牆結構前,提早約13.9小時得知颱風有雙眼牆結構。
According to the previous researches, the northwest Pacific occurs the most concentric eyewall (CE) Typhoon. Using ECMWF Interrim reanalysis data and composite energy data derived from SSMI microwave satellite, and utilize discriminant analysis method, to analysis the CE typhoon cases and non-CE typhoon cases. At the last, get the class result and parameters contribution, then verify the cases during 2012-2015.
The parameters used in this study are 850hPa relative vorticity, 850hPa relative humidity, 200hPa divergence, 850hPa-200hPa vertical wind shear, sea surface temperature, and composite energy. The hit rate during 2000-2011 is 80.6%, and the discriminant ability is over significant level. Besides, the bigger contribution are 850hPa-200hPa vertical wind shear, 850hPa relative vorticity, and composite energy.
Then, set the threshold of discriminant score, and verify the cases that intensity are strong during 2012-2015. The hit rate is 82%, and we can know when will format CE structure before satellite observed by average 13.9 hrs in advanced.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 5
第二章 資料介紹 7
2.1 ECMWF再分析資料 7
2.2 JTWC颱風最佳路徑資料 7
2.3 SSM/I與SSMI/S衛星微波資料 8
2.4 微波衛星影像 9
2.5 紅外線衛星影像 10
2.6 雙眼牆颱風資料庫 10
2.7 統計軟體SPSS 11
第三章 研究方法 12
3.1 區別分析 12
3.1.1 區別類別 15
3.1.2 統計檢定 15
3.2 參數處理 16
3.2.1 850hPa相對渦度 17
3.2.2 850hPa相對濕度 17
3.2.3 850-200hPa垂直風切 17
3.2.4 海洋表面溫度 18
3.2.5 200hPa輻散場 18
3.2.6 合成熱能 19
第四章 結果與討論 24
4.1 區別分析結果 24
4.2 驗證結果(2012-2015年) 26
4.3 颱風個案分析(2012-2015年) 27
4.3.1 Hit 27
4.3.2 Correct rejection 29
4.3.3 Hit but Delay 30
4.3.4 Miss 31
4.3.5 False alarm 32
第五章 總結與未來展望 34
5.1 結論 34
5.2 未來展望 35
參考文獻 37
參考網站 41
附表 42
附圖 48
劉崇治,2001:衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用。國立中央大學大氣物理研究所博士論文,162頁。台灣桃園。
劉嘉騏,2007:應用SSM/I 衛星資料分析颱風形成之激發機制。國立中央大學大氣物理研究所碩士論文,92頁。台灣桃園。
白意詩,2014:西北太平洋與北大西洋雙眼牆颱風研究。國立台灣大學理學院大氣科學系碩士論文,118頁。台灣台北。
江豪章,2007:雙眼牆颱風之特性探討。國立台灣大學理學院大氣科學系碩士論文,130頁。台灣台北。
吳嘉鴻,2007:雙眼牆結構渦旋抗垂直風切能力探討。國立台灣大學理學院大氣科學系碩士論文。台灣台北。
楊憶婷,2012:微波衛星觀測西北太平洋雙眼牆颱風特性之探討。國立台灣大學理學院大氣科學系博士論文。台灣台北。
黃建齊,2014:應用線性判別分析法改善衛星資料估算颱風生成潛勢指標之研究。國立中央大學大氣物理研究所碩士論文,102頁。台灣桃園。
蕭靖謀,2013:應用衛星資料估算之海上降水型態分析雙眼牆颱風的結構與強度變化。國立中央大學大氣物理研究所碩士論文,73頁。台灣桃園。
黃昭銘,2015:應用GSMaP衛星資料分析雙眼牆颱風的結構變化與降雨強度之關係。國立中央大學大氣物理研究所碩士論文,67頁。台灣桃園。
Chu, K., Tan, Z.-M., 2014: Annular Typhoon in the Western North Pacific. Wea. Forecasting, 29, 241-251.
Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Weather Rev., 129, 1704 – 1717.
DeMaria, M. and J. Kaplan, 1999: An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Wea.Forecasting, 14, 326-337.
Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurement. J. Atmos. Oceanic Technol., 12, 755-770.
Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16715-16735.
Fisher, R. A., 1936: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2), 179–188.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc. 276–277.
Knaff, J. A., and J. P. Kossin, 2002,: Annular Hurricanes. Wea. Forecasting, 18, 204-223.
Knaff, J. A., Charles R. S., Mark D., 2005: An Operational Statistical Typhoon Intensity Prediction Scheme for the Western North Pacific. Wea. Forecasting, 20, 688-699.
Kuo, H.-C. L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722 – 2734.
——, C.-P. Chang, Y.-T. Yang, H.-J. Jiang, 2009: Western North Pacific Typhoons with Concentric Eyewalls. Mon. Wea. Rev., 137, 3758–3770.
Lin, I-I, Goni, G. J.; Knaff, J. A.; Forbes, C.; Ali, M. M., 2013: Ocean Heat Content for Tropical Cyclone Intensity Forecasting and Its Impact on Storm Surge. Natural Hazards, 66(3), 1481-1500.
Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2001: A contrast and comparison of near-sea surface air temperature/humidity from GMS and SSM/I data with an improved algorithm. IEEE Trans. Geosci. Remote Sens., 39, 2148-2157.
Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2002: A satellite-derived Objective Potential Index for MCS development during the Mei-yu period. J. Meteor. Soc. Japan., 80, 503-517.
Montgomery M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435 – 465.
Nong, S., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Q. J. R. Meteorol. Soc., 129, 3323–3338.
Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506-521.
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Wea. Rev., 139, 3829-3847.
——, ——, ——, and J. A. Knaff, 2012: Hurricane Eyewall Replacement Cycle Thermodynamics and the Relict Inner Eyewall Circulation. Mon. Wea. Rev., 140, 4035–4045.
Schumacher, A. B., M. DeMaria, and J. A. Knaff, 2009: Objective estimation of the 24-h probability of tropical cyclone formation. Wea. Forecasting, 24, 456-471.
Terwey, W. D., and M. T. Montgomery, 2003: Vortex waves and evolution in sharp vorticity gradient vortices, Colorado State University Bluebook #734, 97 pp.
Wang, Y., 2009: How do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity? J. Atmos. Sci., 66, 1250-1273
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 583-587 pp.
Willoughby, H. E., J. A. Clos, M. G. Shoreibah, 1982: Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex.J. Atmos. Sci. 39, 395–411.
Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin. Mon. Wea. Rev., 141, 2632-2648.
——, E. A. Hendricks, H.-C. Kuo, and M. S. Peng, 2014: Long-Lived Concentric Eyewalls in Typhoon Soulik (2013). Mon. Wea. Rev., 142, 3365–3371.
——, H.-C. Kuo, E. A. Hendricks, Y.-C. Liu, and M. S. Peng, 2015: Relationship between Typhoons with Concentric Eyewalls and ENSO in the Western North Pacific Basin. J. Climate, 28, 3612–3623.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊