孫于力,2015:同化虛擬位渦反演旋以及收支診斷分析:梅姬颱風。國立中央大學,大氣物理研究所,碩士論文,1-77。黃子茂,2012:同化虛擬位渦反演渦旋對颱風凡那比颱風初始場分析及預報之影響。國立中央大學,大氣物理研究所,碩士論文,1-59。江孟恆,2014:環境風切引發之颱風對流不對稱研究-衛星資料分析及數值模式模擬。中國文化大學,地學研究所,碩士論文,1-6。Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the Upstream Track Deflection of Tropical Cyclones Past a Mountain Range: Idealized Experiments. J. Atmos. Sci., 73, 3157–3180.
──, and Y.-L. Lin, 2008: The influence of mesoscalemountains on vortex tracks: Shallow-water modeling study. Meteor. Atmos. Phys., 101, 1–20.
──, I.-H. Wu, L. Feng, 2016: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. JGR, 121, 12,647–12,676.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615.
Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–562.
──, S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849–1866.
──, and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 2095–2106.
──, S.-H. Chen, L. Liu, 2016: Orographic influence on basic flow and cyclone circulation and their Impacts on track deflection of an idealized tropical cyclone. J.Atmos.Sci, 73, 3951–3974.
Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001.
Sun, W.-Y., 2016: The vortex moving toward Taiwan and the influence of the central mountain range. Geosci. Lett., 3:21.
Wang, X.-B., D. -L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: formulation and quasi-balanced flow. J. Atmos. Sci, 60:1593–1607
Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332.
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899–1911.
──, and ──, 2001: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639–3649.