跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝佳宏
研究生(外文):Jia-Hong Xie
論文名稱:地形作用對西行熱帶氣旋之影響:理想個案數值模擬
指導教授:黃清勇黃清勇引用關係
指導教授(外文):Ching-Yuang Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:116
中文關鍵詞:位渦收支波數一
外文關鍵詞:PV budgetwave number 1
相關次數:
  • 被引用被引用:3
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
2015年蘇迪勒颱風和2016年梅姬颱風,兩者具有極為相似的路徑以及在台灣的降雨模式,而對於台灣地形對於颱風路徑的影響,前人做了許多研究,而本文使用了理想化模式並進行位渦收支以了解其中位渦相關動力及結構,分析造成其路徑及雨量會有差異的原因。
當我們將環境的駛流速度、登陸角度、登陸位置調整得和蘇迪勒及梅姬很接近,理想化模式的結果也同樣在高斯地形的東北側及西南側模擬出降雨極值,若改變其中任何一個條件,則雨量的結果會產生差異,若登陸位置不同,則降雨區域會造成差異,偏北登陸時,地形西南側降雨增加,偏南登陸時,地形東北側降雨增加,當颱風登陸角度較大時,颱風對於台灣地形上的降雨有減少的趨勢。
另外,颱風中心會傾向於往波數一的位渦極大值的方向移動,因此颱風的移動速度可以藉由位渦趨勢項來計算出來,並將各個位渦趨勢分項分開來看,即可了解對於颱風移動主要貢獻的位渦趨勢分項為何,進而得知影響颱風前進、偏折的原因為何。我們發現颱風在登陸前,位渦趨勢水平平流項對於颱風的移動貢獻為最主要,颱風登陸以後,位渦趨勢非絕熱加熱項及垂直平流項的作用逐漸增大,這是因為颱風受到地形影響產生了不對稱的對流,過山前,颱風會有南偏的跡象,這是受到背風面下坡風產生的正向上的非絕熱加熱梯度造成的,颱風過山出海過後,移動的速度相比於登陸前會減慢很多,這是因為颱風結構受破壞的緣故,另外,颱風在過山後,本來的低層環流會無法過山而留在山前然後逐漸消散,新的低層環流在山西側重新spin up。敏感度測試方面,改變地形角度對於登陸前的位渦趨勢水平平流項的分佈有影響,因此會使颱風在登陸前北移,調整駛流強度也會影響到位渦收支的作用,使颱風過山前南偏的距離改變,改變颱風初始渦旋的位置對於颱風的過山前南偏距離也有影響,初始位置較北,颱風南偏距離增加,初始位置偏南,颱風南偏就變得不明顯。
最後,我們將蘇迪勒梅姬的分析場模擬結果,及理想化模式的模擬結果做雨量的分析,蘇迪勒和梅姬在雨量時序結果是十分接近的,符合觀測的結果,理想化模式雖然有符合降雨極值分佈在地形東北側及西南側的趨勢,但其量值多寡及降雨時間仍有些許差異,推測差異來源來自於海陸分佈及地形形狀的不同。
Both Typhoons Soudelor (2015) and Megi (2016) exhibit a great similarity on the track and accumulated rainfall over Taiwan, which provides a motivation of this study using an idealized WRF model to investigate the behaviors of the tropical cyclone (TC) and the associated potential-vorticity (PV) vortex dynamics. To understand the sensitivity of the track and rainfall to the potential factors, a series of sensitivity experiments are conducted, including the changing parameters in the steering flow, the landfall angle and the initial position of the vortex.
The idealized model results indicate that a double-peak rainfall distribution (over the northeastern and southwestern slopes) can be produced over a Gaussian mountain island when both the factors of steering wind and impinging direction are close to the observed. However, the accumulated rainfall can be greatly changed when both factors considerably deviate from the real conditions. The TC tends to move to the region of maximum wavenumber-one component of the net PV tendency, at a translation speed closely following the calculation of regression on wavenumber-one PV tendency budgets within the TC. The TC will be deflected southward as closing to the mountain, due to the large positive tendency from diabatic heating in PV budgets. The TC will slow down after passing over the mountain and moving to the ocean, as a result of large positive tendency from the vertical advection of potential vorticity over land.
Sensitivity tests show that the southwestern (northeastern) rainfall peak intensity will be reduced if the initial vortex position is farther southward (northward), and the total rainfall on the mountain will be less (more) if the steering flow becomes stronger (weaker). The potential vorticity advection term will be different pattern in different terrain angles, which cause the vortex deflects to the north before landfall. It also shows the southward deflection before crossing the mountains will be changed if the strength of the steering flow is changed.We found that when the initial position of vortex is more norther, the southward deflection displacements before crossing the mountains will increase. On the contrary, the southward deflection displacements before crossing the mountains will decrease.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 前人研究 1
1-3 研究動機及目的 4
第二章 個案與研究方法 5
2-1 參考之個案介紹 5
2-2 位渦收支 7
第三章 模式介紹與設定 11
3-1 模式簡介 11
3-2 理想化模式 11
3-3 分析場模擬 15
3-4 實驗設計 15
第四章 模擬結果 16
4-1 路徑、總雨量部分 16
4-2雨量時序與後推軌跡部分 17
4-2-1調整初始位置對與雨量影響 18
4-2-2調整Rmw對雨量影響 19
4-2-3調整地形旋轉角度對雨量影響 19
4-2-4調整駛流對雨量影響 20
4-3位渦收支與路徑分析部分 21
4-3-1位渦收支診斷 21
4-3-2控制組實驗分析 22
4-3-3敏感度測試實驗分析 27
4-4預報分析場的雨量及後推軌跡 32
第五章 結果討論 34
參考資料 37
表格 39
附圖 44
孫于力,2015:同化虛擬位渦反演旋以及收支診斷分析:梅姬颱風。國立中央大學,大氣物理研究所,碩士論文,1-77。

黃子茂,2012:同化虛擬位渦反演渦旋對颱風凡那比颱風初始場分析及預報之影響。國立中央大學,大氣物理研究所,碩士論文,1-59。

江孟恆,2014:環境風切引發之颱風對流不對稱研究-衛星資料分析及數值模式模擬。中國文化大學,地學研究所,碩士論文,1-6。

Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702.

Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.

Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the Upstream Track Deflection of Tropical Cyclones Past a Mountain Range: Idealized Experiments. J. Atmos. Sci., 73, 3157–3180.

──, and Y.-L. Lin, 2008: The influence of mesoscalemountains on vortex tracks: Shallow-water modeling study. Meteor. Atmos. Phys., 101, 1–20.

──, I.-H. Wu, L. Feng, 2016: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. JGR, 121, 12,647–12,676.

Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.

Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615.

Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–562.
──, S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849–1866.

──, and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 2095–2106.

──, S.-H. Chen, L. Liu, 2016: Orographic influence on basic flow and cyclone circulation and their Impacts on track deflection of an idealized tropical cyclone. J.Atmos.Sci, 73, 3951–3974.

Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001.

Sun, W.-Y., 2016: The vortex moving toward Taiwan and the influence of the central mountain range. Geosci. Lett., 3:21.

Wang, X.-B., D. -L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: formulation and quasi-balanced flow. J. Atmos. Sci, 60:1593–1607

Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332.

Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.

Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899–1911.

──, and ──, 2001: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639–3649.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊