|
Baker, K.R., Foley, K.M., 2011 : A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2.5. Atmospheric Environment, 45, 3758-3767. Burr, M. J. and Y. Zhang, 2011 : Source apportionment of fine particulate matter over the Eastern U.S. Part I: source sensitivity simulations using CMAQ with the Brute Force method. Atmospheric Research, 2(3), 300‐317. Byun, D., Schere, K.L., 2006 : Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51-77. Chang, S. Y., Chou, C. C., Liu, S., Zhang, Y., 2013 : The characteristics of PM2. 5 and its chemical compositions between different prevailing wind patterns in Guangzhou. Aerosol Air Qual. Res, 13(4), 1373-1383. Fan, Q., Lan, J., Liu, Y., Wang, X., Chan, P., Fan, S., Hong, Y., Liu, Y., Zeng, Y., Liang, G., Feng, Y., 2015 : Diagnostic analysis of the sulfate aerosol pollution in spring over Pearl River Delta, China. Aerosol and Air Quality Research, 15(1), 46-57. Fang, G.-C. and S.-C. Chang, 2010 : Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research, 98(2), 368–377. Fann, N., Fulcher, C.M., Baker, K.R., 2013 : The recent and future health burden of air pollution apportioned across 23 US sectors. Environmental science & technology, 47(8), 3580-3589. Foley, K.M., Roselle, S.J., Appel, K.W., Bhave, P.V., Pleim, J.E., Otte, T.L., Mathur, R., Sarwar, G., Young, J.O., Gilliam, R.C., Nolte, C.G., Kelly, J.T., Gilliland, A.B., Bash, J.O., 2010 : Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci. Model Dev. 3, 205-226. Hong, S. Y., Noh, Y., Dudhia, J., 2006 : A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, 134(9), 2318-2341. Hsu, C.-H. and F.-Y. Cheng, 2016 : Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397-408. Kain, J. S., 2004 : The Kain–Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), 170-181. Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M., Yarwood, G., 2009 : Comparison of source apportionment and sensitivity analysis in a particulate matter air quality model. Environmental science & technology, 43(17), 6669-6675. Kuo, P. H., Tsuang, B. J., Chen, C. J., Hu, S. W., Chiang, C. J., Tsai, J. L., ... & Ku, K. C., 2014 : Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world's largest coal-fired power plant. Atmospheric Environment, 96, 117-124. Kwok, R., Fung, J. C., Lau, A. K., Wang, Z. S., 2012 : Tracking emission sources of sulfur and elemental carbon in Hong Kong/Pearl River Delta region. Journal of atmospheric chemistry, 69(1), 1-22. Kwok, R. H. F., Napelenok, S. L., Baker, K. R., 2013 : Implementation and evaluation of PM 2.5 source contribution analysis in a photochemical model. Atmospheric Environment, 80, 398-407. Kwok, R. H. F., Baker, K. R., Napelenok, S. L., Tonnesen, G. S., 2015 : Photochemical grid model implementation and application of VOC, NO x, and O 3 source apportionment. Geoscientific Model Development, 8(1), 99-114. Liu, Y., Bourgeois, A., Warner, T., Swerdlin, S., Hacker, J., 2005 : Implementation of observation-nudging based FDDA into WRF for supporting ATEC test operations. In WRF/MM5 Users' Workshop June (pp. 27-30). Marmur, A., Unal, A., Mulholland, J.A., Russell, A.G., 2005 : Optimization based source apportionment of PM2.5 incorporating gas‐to‐particle ratios. Environmental Science and Technology, 39, 3245‐3254. Napelenok, S. L., Cohan, D. S., Odman, M. T., Tonse, S., 2008 : Extension and evaluation of sensitivity analysis capabilities in a photochemical model. Environmental Modelling & Software, 23(8), 994-999. Napelenok, S. L., Foley, K. M., Kang, D., Mathur, R., Pierce, T., Rao, S. T., 2011 : Dynamic evaluation of regional air quality model’s response to emission reductions in the presence of uncertain emission inventories. Atmospheric Environment, 45(24), 4091-4098. Pueschel, R. F., Valin, C. V., Castillo, R. C., Kadlecek, J. A., Ganor, E., 1986 : Aerosols in polluted versus nonpolluted air masses: Long-range transport and effects on clouds. Journal of Climate and Applied Meteorology, 25(12), 1908-1917. Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., Vanrolleghem, P. A., 2007 : Uncertainty in the environmental modelling process–a framework and guidance. Environmental modelling & software, 22(11), 1543-1556. Seinfeld, J. H. and Pandis, S. N., 2006 : Atmospheric chemistry and physics: from air pollution to climate change, 2 ed, Wiley, New York. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G., 2005 : A Description of the Advanced Research WRF Version 2. Technical Note No. NCAR/TN-468þSTR. TEDS-9.0, 2016. Taiwan Emission Data System Version 9.0. Environmental Protection Administration, Taipei, Taiwan, Republic of China. Tseng, C. Y., Lin, S. L., Mwangi, J. K., Yuan, C. S., Wu, Y. L., 2016 : Characteristics of atmospheric PM2.5 in a densely populated city with multi-emission sources. Aerosol and Air Quality Research, 16(9), 2145-2158. Tsimpidi, A. P., M. Trail, Y. Hu, A. Nenes, A. G. Russell., 2012 : Modeling an air pollution episode in northwestern United States: Identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Journal of the Air & Waste Management Association, 62(10), 1150-1165. Zhang, W., Capps, S. L., Hu, Y., Nenes, A., Napelenok, S. L., Russell, A. G., 2012 : Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models. Geoscientific Model Development, 5(2), 355-368.
|