跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑋成
研究生(外文):Wei-Cheng Hung
論文名稱:應用蟻群演算法求解3D列印之適應式切層
論文名稱(外文):Applying ant colony optimization to adaptive slicing for rapid prototyping
指導教授:王啟泰
指導教授(外文):Chi-Tai Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:快速成型蟻群演算法適應式切層
外文關鍵詞:Rapid PrototypingAnt Colony OptimizationAdaptive Slicing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
近年來自造者的概念不斷水漲船高,3D列印也跟著聲勢看漲。在業界,因為列印的效率低落,使得3D列印仍然停留在初期模型驗證與產品測試的階段,無法達到大量製造的規模,所以若能在不影響3D列印硬體技術下的情況下,提升軟體上的前處理,則可以以最小成本提升列印效率;在學術界,提出了許多優化模型切層的演算法,求解方式仍有需多困難,許多相關研究領域的學者認為此問題仍有相當大的發展空間。
適應式切層(Adaptive Slicing)的問題為一混合整數規劃問題,針對混合整數規劃問題已經有很多的學者利用啟發式演算法對這類問題進行求解,像是蟻群演算法等。本研究採用Wang於2014年提出的適應式切層模型為基礎,發展蟻群演算法來求解此模型。本研究為了提升軟體應用上的效率,提出適應式切層求解之方法,目的在於快速求解切層問題,提升3D列印使用者的體驗與效率。
In recent years, the concept of maker constantly rising, 3D printing also followed the momentum bullish. In the industry, because the efficiency of 3D printing is low, it remains in the initial model validation and product testing stage. Achieving mass production still has a long way to go. Therefore, if we can improve the software on the pre-treatment under the circumstance of not affecting the 3D print hardware, you can maximize the printing efficiency with very low cost; in academics, a lot of thesis of slicing optimization have be proposed. However, solving the problem in model slicing still faces challenges. Many scholars in this field think that the problem is still considerable.
Adaptive slicing is a mixed-integer programming problem. For mixed-integer programming problems, many scholars have utilized heuristic algorithms to solve such problems, such as ant colony optimization. Based on the mathematical model of adaptive slicing problem, which proposed by Wang in 2014. We develop an ant colony algorithm to solve the problem. In order to decrease the degree of uncomfortable experience for 3D printing user, a fast algorithm for adaptive slicing problem is necessary.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
第二章 文獻探討 3
2-1 快速成型技術 3
2-2 模型切層 7
2-2-1 均勻切層 7
2-2-2 適應式切層問題 9
2-3 啟發式演算法 12
2-3-1 蟻群演算法 12
第三章 問題描述與研究方法 17
3-1 技術介紹 17
3-1-1 模型切層輪廓 17
3-1-2 網格顯著性(Mesh Saliency) 18
3-2 問題描述 19
3-3 蟻群演算法之設計 22
3-3-1 取得視覺品質資訊 23
3-3-2 路徑轉換規則 23
3-3-3 費洛蒙釋放機制 24
3-3-4 費洛蒙更新機制 24
3-3-5 蟻群演算法架構 25
第四章 實驗設計與結果分析 29
4-1 參數設計 29
4-1-1 螞蟻數量(ANT) 29
4-1-2 費洛蒙濃度初始值(τ0) 30
4-1-3 費洛蒙濃度與視覺品質能見度(α,β) 31
4-1-4 費洛蒙揮發係數(ρ) 32
4-1-5 迭代數(I) 33
4-1-6 小結 34
4-2 ACO_ASP之求解效能測試 34
4-3 總結 35
第五章 結論與後續研究 36
5-1 結論 36
5-2 後續研究 36
5-2-1 切層系統架構 36
5-2-2 ACO_ASP程式優化 38
參考文獻 39
[1] Chakraborty, L. and Choudhury, A. R. “A semi-analytic approach for direct slicing of free form surfaces for layered manufacturing”, Rapid Prototyping Journal, Vol. 13, Iss. 4, pp. 256-264, 2007.
[2] Colorni, A., Dorigo, M., Maniezzo, V., Elettronica, D. D. and Milano, P. D. “Distributed optimization by ant colonies”, Proceedings of the first European conference on artificial life, Vol. 142, pp. 134-142, 1991.
[3] Crump, S. S. and Minn, M. “Apparatus and method for creating three-dimensional objects”, U.S. Patent 5 121 329, Jun 9, 1992.
[4] DeSimone, J. M., Tumbleston, J. R., Shrivanyants, D., Ermoshkin N., Janusziewicz, R., Johnson, A. R., Kelly, D., Chen, K., Pinschmidt R., Rolland, J. P., Ermoshkin, A. and Samulski, E. T. “Continuous liquid interface production of 3D objects”, Science, Vol. 347, pp. 1349-1352, 2015.
[5] Dolenc, A. and Mäkelä, I. “Slicing procedures for layered manufacturing techniques”, Computer-Aided Design. Vol. 26, Iss. 2, pp. 119-126, 1994.
[6] Dorigo, M., Maniezzo, V. and Colorni, A. “The ant system optimization by a colony of cooperating agents”, IEEE Transactions on Systems. Vol. 26, No. 1, pp. 1-13, 1996.
[7] Dorigo, M. and Gambardella, L. M. “Ant colony system: a cooperative learning approach to the traveling salesman problem”, IEEE Transactions on Evolutionary Computation. Vol. 1, No. 1, pp. 53-66, 1997.
[8] Hayasi, M. T. and Asiabanpour, B. “A new adaptive slicing approach for the fully dense freeform fabrication(FDFF)process”, Journal of Intelligent Manufacturing, Vol. 24, Iss. 4, pp. 683-694, 2013.
[9] Hull, C. W. and Calif, Arcadia. “Apparatus for production of three-dimensional objects by stereolithography”, U.S. Patent 4 575 330, Mar 11, 1986.
[10] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. “Optimization by simulated annealing”, Science, Vol. 220, No. 4598, pp. 671-680, 1983.
[11] Kirschman, C. F. and Jara-Almonte, C. C. “A parallel slicing algorithm for solid freeform fabrication process”, Solid Freeform Fabrication Symposium, pp. 26-33, 1992.
[12] Lee, C. H., Varshney, A. and Jacobs, D. W. “Mesh saliency”, ACM Transactions on Graphics, Vol. 24, Iss. 3, pp. 659-666, 2005.
[13] Ma, W., But, W. and He, P. “Nurbs-based adaptive slicing for efficient rapid prototyping”, Computer-Aided Design, Vol. 36, Iss. 5, pp. 1309-1325, 2004.
[14] Mani, K., Kulkarni, P. and Dutta, D. “Region-based adaptive slicing”, Computer-Aided Design, Vol. 31, Iss. 5, pp. 317-333, 1999.
[15] Massachusetts Institute of Technology. “Three-dimensional printing techniques”, U.S. Patent 5 204 055, Apr 20, 1993.
[16] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A. H. “Equation of state calculations by fast computer machine”, The Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092, 1985.
[17] Mullar, S. M. and Meher, R. S. “Optimizing of robot gripper configurations using ant colony optimization”, International Journal of Engineering Research & Technology, Vol. 2, Iss. 9, pp. 2655-2662, 2013.
[18] Pandey, P. M., Reddy, N. V. and Dhande, S. G. “Slicing procedures in layered manufacturing a review”, Rapid Prototyping Journal, Vol. 9, No. 5, pp. 274-288, 2003.
[19] Rai, P. and Dutta, M. “Image edge detection using modified ant colony optimization algorithm based on weighted heuristics”, International Journal of Computer Applications, Vol. 68, No. 15, pp. 5-9, 2013.
[20] Reshamwala, A. and Vinchurkar, D. P. “Robot path planning using an ant colony optimization approach”, International Journal of Advanced Research in Artificial Intelligence, Vol. 2, No. 3, pp. 65-71, 2013.
[21] Sabourin, E., Houser, S. A. and Bohn, J. H. “Adaptive slicing using stepwise uniform refinement”, Rapid Prototyping Journal, Vol. 2, No. 4, pp. 20-26, 1996.
[22] Sama, M., Pellegrini, P., D’Ariano, A., Rodriguez, J. and Pacciarelli, D. “Ant colony optimization for the real-time train routing selection problem”, Transportation Research Part B: Methodological, Vol. 85, pp. 89-108, 2016.
[23] Schülter, M., Egea, J. A. and Banga, J. R. “Extended ant colony optimization for non-convex mixed integer nonlinear programming”, Computer & Operations Research, Vol. 36, Iss. 7, pp. 2217-2229, 2009.
[24] Song, R., Liu, Y., Martin, R. and Rosin, P. “Mesh saliency via spectral processing”, ACM Transactions on Graphics, Vol. 33, Iss. 1, pp. 1-17, 2014
[25] Starly, B., Lau, A., Sun, W., Lau, W. and Bradbury, T. “Direct slicing of step based nurbs models for layered manufacturing”, Computer-Aided Design, Vol. 37, Iss. 4, pp. 387-397, 2005.
[26] Stützle, T. and Hoos, H. H. “Max-min ant system”, Future Generation Computer Systems, Vol. 16, Iss. 9, pp. 889-914, 2000.
[27] Tata, K., Fadel, G., Bagchi, A. and Aziz, N. “Efficient slicing for layered manufacturing”, The Rapid Prototyping Journal, Vol. 4, Iss. 4, pp. 152-167, 1998.
[28] The University of Texas System. “Method and apparatus for producing parts by selective sintering”, U.S. Patent 4 863 538, Sep 5, 1989.
[29] Tyber, J. and Bøhn, J. H. “Local adaptive slicing”, Rapid Prototyping Journal, Vol. 4, No. 3, pp. 118-127, 1998.
[30] Wang, W., Chao, H., Yang, Z., Tong, X., Li, H. and Liu, L. “Saliency‐preserving slicing optimization for effective 3D printing”, Computer Graphics Forum, Vol. 33, No. 5, pp. 1-12, 2014.
[31] Yang, P. and Qian, X. “Adaptive slicing of moving least squares surfaces- toward direct manufacturing of point set surfaces”, Journal of Computing and Information Science in Engineering, Vol. 8, Iss. 3, pp. 1-13, 2008.
[32] Zeng, L., Lai, L. M., Qi, D., Lai, Y. and Yuen, M. M. “Efficient slicing procedure based on adaptive layer depth normal image”, Computer-Aided Design, Vol. 43, Iss. 12, pp. 1577-1586, 2011.
[33] Zhang, J. and Liou, F. “Adaptive slicing for a multi-Axis laser aided manufacturing process”, The Journal of Chemical Physics, Vol. 126, Iss. 2, pp. 254-261, 2004.
[34] Zhang, Z. and Joshi, S. “An improved slicing algorithm with efficient contour construction using STL files”, The International Journal of Advanced Manufacturing Technology, Vol. 80, Iss. 5, pp. 1347-1362, 2015.
[35] Zhao, Z. and Laperrière, L. “Adaptive direct slicing of the solid model for rapid prototyping”, The Rapid Prototyping Journal, Vol. 38, Iss. 1, pp. 69-83, 2000.
[36] Zhou, M. Y., Xi, J. T. and Yan, J. Q. “Adaptive direct slicing with non- uniform cusp heights for rapid prototyping”, The International Journal of Advanced Manufacturing Technology, Vol. 23, Iss. 1, pp. 20-27, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊