1. Davison, A.C., & Hinkley, D.V., Bootstrap Methods and their Application., Cambridge University Press., New York ,1997.
2. Mundform, D. J, et al., Number of Replications Required in Monte Carlo Simulation Studies: A Synthesis of Four Studies., Journal of Modern Applied Statistical Methods., New York ,2001.
3. Efron, B., Bootstrap Methods: Another Look at Jackknife., The Annals of Statistics., New York ,1979.
4. Efron B., & Tibshirani R.J., An Introduction to the Bootstrap., Chapman and Hall., London, 1993.
5. Efron, B., Better Bootstrap Confidence Intervals., Journal of the American Statistical Association., 1987.
6. Hall, P., On the removal of skewness by transformation., Journal of the Royal., 1992.
7. 許力升,中央極限定理應用於偏斜分布時樣本大小之探討,淡江大學數學系碩士班,新北市,民國99年。8. Hutchinson, S. R., & Bandalos, D. L. A guide to Monte Carlo simulation research for applied researchers., Journal of Vocational Education Research., 1997, 22(4): 233-45.
9. Johnson, N. J., Modified t tests and confidence intervals for asymmetrical populations., Journal of the American Statistical Association., 1978, 73(363): 536-544.
10. Kang, K. & Schmeiser, B., Graphical methods for evaluating and comparing
confidence-interval procedures., Operations Research., 1990, 38(3): 546-553.
11. Kao, L, et al., Good Luck or Good Strategy? : Bootstrapped Mutual Funds Performance, Journal of Management & Systems., 2007, 14(3): 341-358.
12. Kroese, D. P, et al. Why the Monte Carlo method is so important today., Computational Statistics., 2014, 6(6): 386-392.
13. Law, A. M., & Kelton, W. D., Confidence interval procedures for steady-state simulations, II: A survey of sequential procedures., Management Science., 1982, 28(5): 550-562.
14. Neyman, J., On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection., Journal of the Royal Statistical Society., 1934, 97(4): 558-625.
15. Carpenter, J. & Bithell, J., Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians., Statistics in medicine., 2000, 19(9): 1141-1164.
16. Shi, W. & Kibria, B. M. G., On some confidence intervals for estimating the mean of a skewed population., International Journal of Mathematical Education in Science and Technology., 2006, 38(3): 412-421.
17. Schruben, L.W., A coverage function for interval estimators of simulation response.,
Management Science., 1980, 26(1): 18-27.
18. Schmeiser, B. W., Some myths and common errors in simulation experiments., Proceedings of the 2001 Winter Simulation Conference., 2001, 1: 39-46.
19. Schmeiser, B.W. & Scott, M. D., SERVO: Simulation experiments with random-vector output., Proceedings of the 1991 Winter Simulation Conference., New Jersey, 1991,
927-936.
20. Schmeiser, B.W. & Yeh, Y., On choosing a single criterion for confidence-interval procedures., Proceedings of the 2002 Winter Simulation Conference., California, 2002, 345-352.
21. Scholz, F.W., The Bootstrap Small Sample Properties., Tech. Rep., 2007.
22. Zhou, X.U ., Nonparametric confidence intervals for the one- and two-sample problems. Biostatistics., 2005, 6(2): 187-200.
23. Yeh, Y. & Schmeiser, B.W., VAMP1RE: a single criterion for rating and
ranking confidence-interval procedures., IIE Transactions., 2015, 47(11): 1203-1216.
24. 周心怡,拔靴法(Bootstrap)之探討及其應用,國立中央大學統計研究所,桃園市,2004,民國93年。
25. Nelson, B.L., Stochastic Simulation Research in Management Science., Management Science., 2004, 50(7): 855-868..