|
[1] H. Pichler, J. Lutz, “Why crude oil vapor pressure should be tested prior to rail transport ”, Advances in Petroleum Exploration and Development, Vol 7, 58-63, 2014. [2] W. F. Spencer, M. M. Cliath, Measurement of pesticide vapor pressures. In residue reviews: Residues of pesticides and other contaminants in the total environment, Gunther, F. A.; Gunther, J. D., Eds. Springer New York: New York, 1983; pp 57-71. [3] H. Östmark, S. Wallin, H. G. Ang, “Vapor pressure of explosives: A critical review ”, Propellants Explos. Pyrotech., Vol 37, 12-23, 2012. [4] H. Dong, C. Wu, X. Yang, H. Qiu, “Measurement and correlation of saturated vapor pressure of 2,4,6,8,10-pentamethylcyclopentasiloxane by means of an inclined ebulliometer ”, Thermochim Acta, Vol 483, 66-69, 2009. [5] B. An, Y. Duan, L. Tan, Z. Yang, “Vapor pressure of HFE 7100 ”, J. Chem. Eng. Data, Vol 60, 1206-1210, 2015. [6] L. Sahraoui, K. Khimeche, A. Dahmani, I. Mokbel, J. Jose, “Experimental vapor pressures (from 1 pa to 100 kpa) of six saturated fatty acid methyl esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate ”, J. Chem. Thermodyn., Vol 102, 270-275, 2016. [7] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, “New reference equation of state for associating liquids ”, Ind. Eng. Chem. Res., Vol 29, 1709-1721, 1990. [8] S. H. Huang, M. Radosz, “Equation of state for small, large, polydisperse, and associating molecules ”, Ind. Eng. Chem. Res., Vol 29, 2284-2294, 1990. [9] J. Gross, G. Sadowski, “Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules ”, Ind. Eng. Chem. Res., Vol 40, 1244-1260, 2001. [10] J. Gross, G. Sadowski, “Application of the perturbed-chain SAFT equation of state to associating systems ”, Ind. Eng. Chem. Res., Vol 41, 5510-5515, 2002. [11] N. I. Diamantonis, I. G. Economou, “Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration ”, Energy Fuels, Vol 25, 3334-3343, 2011. [12] N. Ferrando, J.-C. de Hemptinne, P. Mougin, J.-P. Passarello, “Prediction of the PC-SAFT associating parameters by molecular simulation ”, J. Phys. Chem. B, Vol 116, 367-377, 2012. [13] M. Umer, K. Albers, G. Sadowski, K. Leonhard, “PC-SAFT parameters from ab initio calculations ”, Fluid Phase Equilib, Vol 362, 41-50, 2014. [14] N. Van Nhu, M. Singh, K. Leonhard, “Quantum mechanically based estimation of perturbed-chain polar statistical associating fluid theory parameters for analyzing their physical significance and predicting properties ”, J. Phys. Chem. B, Vol 112, 5693-5701, 2008. [15] T. Jensen, A. Fredenslund, P. Rasmussen, “Pure-component vapor pressures using UNIFAC group contribution ”, Ind. Eng. Chem. Fundam., Vol 20, 239-246, 1981. [16] A. Fredenslund, P. Rasmussen, “Correlation of pure component Gibbs energy. Using UNIFAC group contribution ”, AIChE J, Vol 25, 203-205, 1979. [17] W. E. Asher, J. F. Pankow, G. B. Erdakos, J. H. Seinfeld, “Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods ”, Atmos. Environ., Vol 36, 1483-1498, 2002. [18] W. E. Asher, J. F. Pankow, “Vapor pressure prediction for alkenoic and aromatic organic compounds by a UNIFAC-based group contribution method ”, Atmos. Environ., Vol 40, 3588-3600, 2006. [19] M. Rezakazemi, A. Marjani, S. Shirazian, “Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds ”, Chem. Eng. Technol., Vol 36, 483-491, 2013. [20] K. G. Joback, R. C. Reid, “Estimation of pure-component properties from group-contributions ”, Chem. Eng. Commun., Vol 57, 233-243, 1987. [21] D. Ambrose, “Correlation and estimation of vapour-liquid critical properties. Part 1: Critical temperatures of organic compounds ”, 1978. [22] A. Horvath, “Molecular design: Chemical structure generation from the properties of pure organic compounds ”, 1992. [23] L. Constantinou, R. Gani, “New group contribution method for estimating properties of pure compounds ”, AIChE J, Vol 40, 1697-1710, 1994. [24] J. Marrero, R. Gani, “Group-contribution based estimation of pure component properties ”, Fluid Phase Equilib, Vol 183, 183-208, 2001. [25] J. Marrero-Morejón, E. Pardillo-Fontdevila, “Estimation of pure compound properties using group-interaction contributions ”, AIChE J, Vol 45, 615-621, 1999. [26] X. Wen, Y. Qiang, “A new group contribution method for estimating critical properties of organic compounds ”, Ind. Eng. Chem. Res., Vol 40, 6245-6250, 2001. [27] Y. Nannoolal, J. Rarey, D. Ramjugernath, “Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions ”, Fluid Phase Equilib, Vol 269, 117-133, 2008. [28] F. Gharagheizi, A. Eslamimanesh, P. Ilani-Kashkouli, A. H. Mohammadi, D. Richon, “Determination of vapor pressure of chemical compounds: A group contribution model for an extremely large database ”, Ind. Eng. Chem. Res., Vol 51, 7119-7125, 2012. [29] T.-Y. Wang, X.-Z. Meng, M. Jia, X.-C. Song, “Predicting the vapor pressure of fatty acid esters in biodiesel by group contribution method ”, Fuel Process. Technol., Vol 131, 223-229, 2015. [30] R. Ceriani, R. Gani, Y. A. Liu, “Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution ”, Fluid Phase Equilib, Vol 337, 53-59, 2013. [31] C. Liang, D. A. Gallagher, “QSPR prediction of vapor pressure from solely theoretically-derived descriptors ”, J. Chem. Inf. Comput. Sci., Vol 38, 321-324, 1998. [32] D. Yaffe, Y. Cohen, “Neural network based temperature-dependent quantitative structure property relations (QSPRs) for predicting vapor pressure of hydrocarbons ”, J. Chem. Inf. Comput. Sci., Vol 41, 463-477, 2001. [33] B. E. Turner, C. L. Costello, P. C. Jurs, “Prediction of critical temperatures and pressures of industrially important organic compounds from molecular structure ”, J. Chem. Inf. Comput. Sci., Vol 38, 639-645, 1998. [34] G. Ding, M. Shao, J. Zhang, J. Tang, W. J. G. M. Peijnenburg, “Predictive models for estimating the vapor pressure of poly- and perfluorinated compounds at different temperatures ”, Atmos. Environ., Vol 75, 147-152, 2013. [35] M. Goodarzi, L. dos Santos Coelho, B. Honarparvar, E. V. Ortiz, P. R. Duchowicz, “Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides ”, Ecotoxicol. Environ. Saf., Vol 128, 52-60, 2016. [36] S.-T. Lin, S. I. Sandler, “A priori phase equilibrium prediction from a segment contribution solvation model ”, Ind. Eng. Chem. Res., Vol 41, 899-913, 2002. [37] S.-T. Lin, J. Chang, S. Wang, W. A. Goddard, S. I. Sandler, “Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model ”, J. Phys. Chem. A, Vol 108, 7429-7439, 2004. [38] S. Wang, S. I. Sandler, C.-C. Chen, “Refinement of COSMO−SAC and the applications ”, Ind. Eng. Chem. Res., Vol 46, 7275-7288, 2007. [39] C.-M. Hsieh, S. I. Sandler, S.-T. Lin, “Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions ”, Fluid Phase Equilib, Vol 297, 90-97, 2010. [40] C.-M. Hsieh, S.-T. Lin, J. Vrabec, “Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior ”, Fluid Phase Equilib, Vol 367, 109-116, 2014. [41] R. Xiong, S. I. Sandler, R. I. Burnett, “An improvement to COSMO-SAC for predicting thermodynamic properties ”, Ind. Eng. Chem. Res., Vol 53, 8265-8278, 2014. [42] C.-M. Hsieh, S.-T. Lin, “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations ”, AIChE J, Vol 54, 2174-2181, 2008. [43] C.-M. Hsieh, S.-T. Lin, “First-principles predictions of vapor−liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations ”, Ind. Eng. Chem. Res., Vol 48, 3197-3205, 2009. [44] C.-M. Hsieh, S.-T. Lin, “Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state ”, Chem. Eng. Sci., Vol 65, 1955-1963, 2010. [45] L.-H. Wang, C.-M. Hsieh, S.-T. Lin, “Improved prediction of vapor pressure for pure liquids and solids from the PR+COSMOSAC equation of state ”, Ind. Eng. Chem. Res., Vol 54, 10115-10125, 2015. [46] D.-Y. Peng, D. B. Robinson, “A new two-constant equation of state ”, Ind. Eng. Chem. Fundam., Vol 15, 59-64, 1976. [47] B. Delley, “An all‐electron numerical method for solving the local density functional for polyatomic molecules ”, J. Chem. Phys., Vol 92, 508-517, 1990. [48] E. Mullins, R. Oldland, Y. A. Liu, S. Wang, S. I. Sandler, C.-C. Chen, M. Zwolak, K. C. Seavey, “Sigma-profile database for using COSMO-based thermodynamic methods ”, Ind. Eng. Chem. Res., Vol 45, 4389-4415, 2006. [49] E. Mullins, Y. A. Liu, A. Ghaderi, S. D. Fast, “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods ”, Ind. Eng. Chem. Res., Vol 47, 1707-1725, 2008. [50] DIPPR, “DIPPR801 thermodynamic properties database ”, Brigham Young University, Provo, Vol 2008. [51] W.-L. Chen, C.-C. Hsu, S.-T. Lin, “Prediction of phase behaviors of acetic acid containing fluids ”, Fluid Phase Equilib, Vol 353, 61-68, 2013. [52] Gmehling, J.; Onken, U.; Arlt, W.; Grenzheuser, P.; Weidlich,U.; Kolbe, B.; Rarey, J.Vapor-Liquid Equilibrium Data Collection;DECHEMA: Frankfurt, 1982-2002; Vol. I. [53] Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection; DECHEMA: Frankfurt, 1977
|