|
Chapter 1 Lee, T.; Wang, P. Y. Screening, Manufacturing, Photoluminescence, and Molecular Recognition of Co-crystals: Cytosine With Dicarboxylic Acids. Cryst. Growth Des. 2010, 10(3), 1419–1434. Desiraju, G. R. Crystal and Co-crystal. CrystEngComm 2003, 5(82), 466–467 Aakery, C. B.; Salmon, D. J. Building Co-crystals With Molecular Sense and Supramolecular Sensibility. CrystEngComm 2005, 7(72), 439–448. Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: an Overview. Int. J. Pharm. 2011, 419(1),1 –11. Karki, S.; Friščić, T.; Fábián, L.; Laity, P. R.; Day, G. M.; Jones, W. Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Adv. Mater. 2009, 21(38-39), 3905–3909. Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9(6), 2950–2967. Zhang, J.; Geng, H.; Virk, T. S.; Zhao, Y.; Tan, J.; Di, C. A.; Liu, Y., Sulfur‐Bridged Annulene‐TCNQ Co‐Crystal: A Self‐Assembled ''Molecular Level Heterojunction'' with Air Stable Ambipolar Charge Transport Behavior. Adv. Mater. 2012, 24(19), 2603–2607. Lei, Y. L.; Liao, L. S.; Lee, S. T. Selective Growth of Dual-Color-Emitting Heterogeneous Microdumbbells Composed of Organic Charge-transfer Complexes. J. Am. Chem. Soc. 2013, 135(10), 3744–3747. Morimoto, M.; Irie, M. A Diarylethene Cocrystal that Converts Light Into Mechanical Work. J. Am. Chem. Soc. 2010, 132(40), 14172–14178. Karunatilaka, C.; Bučar, D. K.; Ditzler, L. R.; Friščić, T.; Swenson, D. C.; MacGillivray, L. R.; Tivanski, A. V. Softening and Hardening of Macro‐and Nano‐Sized Organic Cocrystals in a Single‐Crystal Transformation. Angew. Chem., Int. Ed. 2011, 50(37), 8642–8646. Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S. L.; Chen, L. T. Stabilization and Spheroidization of Ammonium Nitrate: Co-crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225(1), 809–817. Chen, S.; Xi, H.; Henry, R. F.; Marsden, I.; Zhang, G. G. Chiral Co-crystal Solid Solution: Structures, Melting Point Phase Diagram, and Chiral Enrichment of (ibuprofen)2(4,4-dipyridyl). CrystEngComm 2010, 12(5), 1485–1493. Bethune, S. J.; Schultheiss, N.; Henck, J. O. Improving the Poor Aqueous Solubility of Nutraceutical Compound Pterostilbene Through Cocrystal Formation. Cryst. Growth Des. 2011, 11(7), 2817–2823. Almarsson, Ö.; Peterson, M. L.; Zaworotko, M. The A to Z of Pharmaceutical Cocrystals: a Decade of Fast-Moving New Science and Patents. Pharm. Pat. Anal. 2012, 1(3), 313–327. Khan, M.; Enkelmann, V.; Brunklaus, G. Crystal Engineering of Pharmaceutical Co-crystals: Application of Methyl Paraben as Molecular Hook. J. Am. Chem. Soc. 2010, 132(14), 5254–5263. Jones, W.; Motherwell, W. S.; Trask, A. V. Pharmaceutical Cocrystals: an Emerging Approach to Physical Property Enhancement. MRS Bull. 2006, 31(11), 875–879. Babu, N. J.; Nangia, A. Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals. Cryst. Growth Des. 2011, 11(7), 2662–2679. Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous Co-crystallization as a Separation Technology: the Study of 1: 2 Co-crystals of Phenazine–Vanillin. Cryst. Growth Des. 2012, 12(12), 5897–5907. Billot, P.; Hosek, P.; Perrin, M. A. Efficient Purification of an Active Pharmaceutical Ingredient via Cocrystallization: From Thermodynamics to Scale-up. Org. Process Res. Dev. 2013, 17(3), 505–511. Urbanus, J.; Roelands, C. M.; Verdoes, D.; Jansens, P. J.; ter Horst, J. H. Co-crystallization as a Separation Technology: Controlling Product Concentrations by Co-crystals. Cryst. Growth Des. 2010, 10(3), 1171–1179. Kim, S.; Li, Z.; Tseng, Y. C.; Nar, H.; Spinelli, E.; Varsolona, R.; Yee, N. Development and Characterization of a Cocrystal as a Viable Solid Form for an Active Pharmaceutical Ingredient. Org. Process Res. Dev. 2013, 17(3), 540–548. Sekhon, B. S. Drug-drug Co-crystals. J. Pharm. Sci. 2012, 20(1), 45-46. Leung, D. H.; Lohani, S.; Ball, R. G.; Canfield, N.; Wang, Y.; Rhodes, T.; Bak, A. Two Novel Pharmaceutical Cocrystals of a Development Compound–screening, Scale-up, and Characterization. Cryst. Growth Des. 2012, 12(3), 1254–1262. Lee, H. L.; Lee, T. Direct Co-crystal Assembly From Synthesis to Co-crystallization. CrystEngComm 2015, 17(47), 9002-9006. Lin, H. L.; Zhang, G. C.; Hsu, P. C.; Lin, S. Y. A Portable Fiber-Optic Raman Analyzer for Fast Real-Time Screening and Identifying Cocrystal Formation of Drug-Coformer via Grinding Process. Microchem. J. 2013, 110, 15-20. Lin, S. Y.; Lin, H. L.; Chi, Y. T.; Huang, Y. T.; Kao, C. Y.; Hsieh, W. H. Thermoanalytical and Fourier Transform Infrared Spectral Curve-Fitting Techniques Used to Investigate the Amorphous Indomethacin Formation and Its Physical Stability in Indomethacin-Soluplus® Solid Dispersions. Int. J. Pharm. 2015, 496(2), 457-465. Zhang, G. C.; Lin, H. L.; Lin, S. Y. Thermal Analysis and FTIR Spectral Curve-Fitting Investigation of Formation Mechanism and Stability of Indomethacin-Saccharin Cocrystals via Solid-State Grinding Process. J. Pharm. Biomed. Anal. 2012, 66, 162-169. Trask, A. V.; Jones, W. Crystal Engineering of Organic Cocrystals by The Solid-State Grinding Approach. Org. Solid State React. 2005, 254, 41-70. Karki, S.; Friščić, T.; Jones, W. Control and Interconversion of Cocrystal Stoichiometry in Grinding: Stepwise Mechanism for The Formation of a Hydrogen-Bonded Cocrystal. CrystEngComm 2009, 11(3), 470-481. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621-1637. Aghababian, R. (Ed.). Essentials of emergency medicine. Jones & Bartlett Publishers. 2010. Behring, C. S. L. WHO Model List of Essential Medicines. 19th List. (April 2015) (Amended November 2015) Griffiths, R. R.; Juliano, L. M.; Chausmer, A. L. Caffeine pharmacology and clinical effects. ASAM, 2003, 3, 193-224. Karki, S.; Friščić, T.; Fábián, L.; Laity, P. R.; Day, G. M.; Jones, W. Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Adv. Mater. 2009, 21(38‐39), 3905-3909. Braga, D.; Grepioni, F.; Maini, L.; Mazzeo, P. P.; Rubini, K. Solvent-free Preparation of Co-crystals of Phenazine and Acridine with Vanillin. Thermochim. Acta. 2010, 507–508,1 –8. Takata, N.; Shiraki, K.; Takano, R.; Hayashi, Y.; Terada, K. Cocrystal Screening of Stanolone and Mestanolone Using Slurry Crystallization. Cryst. Growth Des. 2008, 8(8), 3032–3037. Croker, D. M.; Rasmuson, Å. C. Isothermal Suspension Conversion as a Route to Cocrystal Production: One-pot Scalable Synthesis. Org. Process Res. Dev. 2014, 18(8), 941–946. Bag, P. P.; Patni, M.; Reddy, C. M. A Kinetically Controlled Crystallization Process for Identifying New Co-crystal Forms: Fast Evaporation of Solvent From Solutions to Dryness. CrystEngComm 2011, 13(19), 5650–5652. Yu, Z. Q.; Chow, P. S.; Tan, R. B. Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile. Cryst. Growth Des. 2010, 10(5), 2382–2387. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Fernandes, A. C.; Matos, H. A.; de Azevedo, E. G. Screening for Pharmaceutical Cocrystals Using the Supercritical Fluid Enhanced Atomization Process. J. Supercrit. Fluids 2010, 53(1), 156–164. Herrmann, M.; Förter‐Barth, U.; Kröber, H.; Kempa, P. B.; Juez‐Lorenzo, M. D. M.; Doyle, S. Co‐Crystallization and Characterization of Pharmaceutical Ingredients. Part. Part. Syst. Charact. 2009, 26(3), 151–156. Alhalaweh, A.; Velaga, S. P. Formation of Cocrystals From Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying. Cryst. Growth Des. 2010, 10(8), 3302–3305. Lee, H. L.; Lin, H. Y.; Lee, T. Large-Scale Crystallization of a Pure Metastable Polymorph by Reaction Coupling. Org. Process Res. Dev. 2014, 18(4), 539-545. Lee, H. L.; Lee, T. Direct Co-crystal Assembly From Synthesis to Co-crystallization. CrystEngComm 2015, 17(47), 9002-9006. Braga, D.; Maini, L.; Grepioni, F. Mechanochemical Preparation of Co-crystals. Chem. Soc. Rev. 2013, 42(18), 7638-7648. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621-1637. Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39(1), 301-312. Rehder, S.; Christensen, N. P. A.; Rantanen, J.; Rades, T.; Leopold, C. S. High-Shear Granulation as a Manufacturing Method for Cocrystal Granules. Eur J Pharm Biopharm. 2013, 85(3), 1019-1030. Sládková, V.; Dammer, O.; Sedmak, G.; Skořepová, E.; Kratochvíl, B. Ivabradine Hydrochloride (S)-Mandelic Acid Co-Crystal: in situ Preparation During Formulation. Crystals. 2017, 7(1), 13-29. Chapter, G. 2040 Disintegration and Dissolution of Dietary Supplements, United States Pharmacopeia 34, National Formulary 29, Rockville, Md., USA, The United States Pharmacopeial Convention. 2011.
Chapter 2 W. Sorasuchart, J. Wardrop, J. W. Ayres, Drug Release from Spray Layered and Coated Drug-Containing Beads: Effects of pH and Comparison of Different Dissolution Methods. Drug Dev. Ind. Pharm. 1999, 25(10), 1093-1098. S. A. Altaf, S. W. Hoag, J. W. Ayres, Bead Compacts. II. Evaluation of Rapidly Disintegrating Nonsegregating Compressed Bead Formulations. Drug Dev. Ind. Pharm. 1999, 25(5), 635-642. T. X. Viegas, R. U. Curatella, L. L. Van Winkle, and G. Brinker, Measurement of Intrinsic Drug Dissolution Rates Using Two Types of Apparatus. Pharm. Tech. 2001, 25(6), 44-53.
Chapter 3 Karki, S.; Friščić, T.; Fábián, L.; Laity, P. R.; Day, G. M.; Jones, W. Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Adv. Mater. 2009, 21(38‐39), 3905-3909. Lee, H. L.; Lin, H. Y.; Lee, T. Large-Scale Crystallization of a Pure Metastable Polymorph by Reaction Coupling. Org. Process Res. Dev. 2014, 18(4), 539-545. Lee, H. L.; Lee, T. Direct Co-crystal Assembly From Synthesis to Co-crystallization. Cryst Eng Comm. 2015, 17(47), 9002-9006. Braga, D.; Maini, L.; Grepioni, F. Mechanochemical Preparation of Co-crystals. Chem. Soc. Rev. 2013, 42(18), 7638-7648. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621-1637. Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39(1), 301-312. Halasz, I.; Puškarić, A.; Kimber, S. A.; Beldon, P. J.; Belenguer, A. M.; Adams, F.; Štrukil, V. Real‐Time In Situ Powder X‐Ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals. Angew. Chem. Int. Ed. 2013, 52(44), 11538-11541. Karki, S.; Friščić, T.; Jones, W. Control and Interconversion of Cocrystal Stoichiometry in Grinding: Stepwise Mechanism for the Formation of a Hydrogen-Bonded Cocrystal. Cryst Eng Comm. 2009, 11(3), 470-481. Tumanov, I. A.; Achkasov, A. F.; Boldyreva, E. V.; Boldyrev, V. V. Following The Products of Mechanochemical Synthesis Step by Step. Cryst Eng Comm, 2001, 13(7), 2213-2216. Halasz, I. Single-Crystal-To-Single-Crystal Reactivity: Gray, Rather Than Black Or White. Cryst. Growth Des. 2010, 10(7), 2817-2823. Cinčić, D.; Friščić, T.; Jones, W. A Stepwise Mechanism for The Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. J. Am. Chem. Soc. 2008, 130(24), 7524-7525. Nguyen, K. L.; Friščić, T.; Day, G. M.; Gladden, L. F.; Jones, W. Terahertz Time-Domain Spectroscopy and the Quantitative Monitoring of Mechanochemical Cocrystal Formation. Nature Mater. 2007, 6(3), 206-209. Friščić, T.; Jones, W. Recent Advances in Understanding The Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621-1637. Drits, V.; Srodon, J.; Eberl, D. D. XRD Measurement of Mean Crystallite Thickness of Illite and Illite/Smectite: Reappraisal of the Kubler Index and the Scherrer Equation. Clays Clay Miner. 1997, 45(3), 461-475. Cleary, P. W. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner. Eng. 1998, 11(11), 1061-1080. Schmidt, R.; Scholze, H. M.; Stolle, A. Temperature progression in a mixer ball mill. Int. J. Ind. Chem. 2016, 7(2), 181-186. Lee, H. L.; Lee, T. Direct Co-crystal Assembly From Synthesis to Co-crystallization. Cryst Eng Comm. 2015, 17(47), 9002-9006. Rehder, S.; Christensen, N. P. A.; Rantanen, J.; Rades, T.; Leopold, C. S. High-Shear Granulation As A Manufacturing Method For Cocrystal Granules. Eur J Pharm Biopharm. 2013, 85(3), 1019-1030. Sládková, V.; Dammer, O.; Sedmak, G.; Skořepová, E.; Kratochvíl, B. Ivabradine Hydrochloride (S)-Mandelic Acid Co-Crystal: In Situ Preparation during Formulation. Crystals. 2017, 7(1), 13. Lee, T.; Hsu, F. B. A Cross-Performance Relationship Between Carr's Index And Dissolution Rate Constant: The Study of Acetaminophen Batches. Drug Dev. Ind. Pharm. 2007,33(11), 1273-1284.
Chapter 4 Friščić, T.; Jones, W. Recent Advances in Understanding The Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621-1637. Tumanov, I. A.; Achkasov, A. F.; Boldyreva, E. V.; Boldyrev, V. V. Following The Products of Mechanochemical Synthesis Step by Step. CrystEngComm 2001, 13(7), 2213-2216. Halasz, I. Single-Crystal-To-Single-Crystal Reactivity: Gray, Rather Than Black Or White. Cryst. Growth Des. 2010, 10(7), 2817-2823. Lee, H. L.; Lee, T. Direct Co-crystal Assembly from Synthesis to Co-crystallization. CrystEngComm 2015, 17(47), 9002-9006. Rehder, S.; Christensen, N. P. A.; Rantanen, J.; Rades, T.; Leopold, C. S. High-Shear Granulation as a Manufacturing Method for Cocrystal Granules. Eur. J. Pharm. Biopharm. 2013, 85(3), 1019-1030. Sládková, V.; Dammer, O.; Sedmak, G.; Skořepová, E.; Kratochvíl, B. Ivabradine Hydrochloride (S)-Mandelic Acid Co-Crystal: In Situ Preparation during Formulation. Crystals. 2017, 7(1), 13-29. Górniak, A.; Wojakowska, A.; Karolewicz, B.; Pluta, J. Phase Diagram and Dissolution Studies of The Fenofibrate–Acetylsalicylic Acid System. J. Therm. Anal. Calorim. 2010, 104(3), 1195-1200.
|