|
[1] S. Dutta, "A review on production, storage of hydrogen and its utilization as an energy resource," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 1148-1156, 2014. [2] B. Parida, S. Iniyan, and R. Goic, "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, vol. 15, pp. 1625-1636, 2011. [3] C. Zamfirescu, I. Dincer, G. Naterer, and R. Banica, "Quantum efficiency modeling and system scaling-up analysis of water splitting with Cd1− xZnxS solid-solution photocatalyst," Chemical Engineering Science, vol. 97, pp. 235-255, 2013. [4] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, pp. 37-38, 1972. [5] M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, and N. S. Lewis, "Principles and Applications of Semiconductor Photoelectrochemistry," in Progress in Inorganic Chemistry, ed: John Wiley & Sons, Inc., 2007, pp. 21-144. [6] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, "Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances," Molecules, vol. 21, p. 900, 2016. [7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, "Photoelectrochemical hydrogen generation from water using solar energy. Materials-related aspects," International Journal of Hydrogen Energy, vol. 27, pp. 991-1022, 2002. 58 [8] K. Rajeshwar, "Fundamentals of semiconductor electrochemistry and photoelectrochemistry," Encyclopedia of Electrochemistry, 2007. [9] H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, "Nano-architecture and material designs for water splitting photoelectrodes," Chemical Society Reviews, vol. 41, pp. 5654-5671, 2012. [10] J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, and S. Ardo, "Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting," Energy & Environmental Science, vol. 8, pp. 2811-2824, 2015. [11] M. D. Bhatt and J. S. Lee, "Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells," Journal of Materials Chemistry A, vol. 3, pp. 10632-10659, 2015. [12] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, et al., "Solar water splitting cells," Chemical Reviews, vol. 110, pp. 6446-6473, 2010. [13] K. Sivula, F. Le Formal, and M. Grätzel, "Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes," ChemSusChem, vol. 4, pp. 432-449, 2011. [14] C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun and S. S. Mao, "A perspective on solardriven water splitting with all-oxide hetero-nanostructures," Energy & Environmental Science, vol. 4, pp. 3889-3899, 2011. 59 [15] R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, "Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocatrodes," Journal of the American Chemical Society, vol. 104, pp. 467-482, 1982. [16] A. Heller and R. G. Vadimsky, "Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP (Ru)]/HCl-KCl/Pt (Rh) cell," Physical Review Letters, vol. 46, p. 1153, 1981. [17] O. Khaselev and J. A. Turner, "Electrochemical Stability of p‐ GaInP2 in Aqueous Electrolytes Toward Photoelectrochemical Water Splitting," Journal of the Electrochemical Society, vol. 145, pp. 3335-3339, 1998. [18] J. Sun, C. Liu, and P. Yang, "Surfactant-free, large-scale, solution– liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction," Journal of the American Chemical Society, vol. 133, pp. 19306-19309, 2011. [19] C. A. Grimes, O. K. Varghese, and S. Ranjan, Hydrogen generation by water splitting: Springer, 2008. [20] E. A. Santori, J. R. Maiolo III, M. J. Bierman, N. C. Strandwitz, M. D. Kelzenberg, B. S. Brunschwig, et al., "Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays," Energy & Environmental Science, vol. 5, pp. 6867-6871, 2012. 60 [21] J. Luo, S. D. Tilley, L. Steier, M. Schreier, M. T. Mayer, H. J. Fan and M. Grätzel, "Solution transformation of Cu2O into CuInS2 for solar water splitting," Nano Letters, vol. 15, pp. 1395-1402, 2015. [22] B. J. Trześniewski and W. A. Smith, "Photocharged BiVO4 photoanodes for improved solar water splitting," Journal of Materials Chemistry A, vol. 4, pp. 2919-2926, 2016. [23] H. Liu, R. Nakamura, and Y. Nakato, "Bismuth–Copper Vanadate BiCu2VO6 as a Novel Photocatalyst for Efficient Visible‐Light‐ Driven Oxygen Evolution," ChemPhysChem, vol. 6, pp. 2499- 2502, 2005. [24] M. Higashi, K. Domen, and R. Abe, "Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation," Journal of the American Chemical Society, vol. 134, pp. 6968-6971, 2012. [25] D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota and K. Domen, "Ta3N5 photoanodes for water splitting prepared by sputtering," Thin Solid Films, vol. 519, pp. 2087-2092, 2011. [26] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang and P. Xiao, "Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment," Applied Surface Science, vol. 361, pp. 133-140, 2016. [27] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001. [28] M. Fujita, "Silicon photonics: Nanocavity brightens silicon," 61 Nature Photonics, vol. 7, pp. 264-265, 2013. [29] J. Binsma, L. Giling, and J. Bloem, "Luminescence of CuInS2: I. The broad band emission and its dependence on the defect chemistry," Journal of Luminescence, vol. 27, pp. 35-53, 1982. [30] B. Tell, J. Shay, and H. Kasper, "Room‐Temperature Electrical Properties of Ten I‐III‐VI2 Semiconductors," Journal of Applied Physics, vol. 43, pp. 2469-2470, 1972. [31] Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao and C. Gao, "Structural phase transition and electrical transport properties of CuInS2 nanocrystals under high pressure," The Journal of Physical Chemistry C, vol. 119, pp. 2963-2968, 2015. [32] H. Y. Ueng and H. Hwang, "The defect structure of CuInS2. Part I: Intrinsic defects," Journal of Physics and Chemistry of Solids, vol. 50, pp. 1297-1305, 1989. [33] B. Tell and F. Thiel, "Photovoltaic properties of p‐n junctions in CuInS2," Journal of Applied Physics, vol. 50, pp. 5045-5046, 1979. [34] K. Ito, N. Matsumoto, T. Horiuchi, K. Ichino, H. Shimoyama, T. Ohashi, et al., "Theoretical model and device performance of CuInS2 thin film solar cell," Japanese Journal of Applied Physics, vol. 39, p. 126, 2000. [35] E. Arici, N. S. Sariciftci, and D. Meissner, "Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices," Advanced Functional Materials, vol. 13, pp. 165-171, 2003. [36] Y. Tang, Y. H. Ng, J.-H. Yun, and R. Amal, "Fabrication of a 62 CuInS2 photoelectrode using a single-step electrodeposition with controlled calcination atmosphere," RSC Advances, vol. 4, pp. 3278-3283, 2014. [37] Y. Choi, M. Beak, and K. Yong, "Solar-driven hydrogen evolution using a CuInS2/CdS/ZnO heterostructure nanowire array as an efficient photoanode," Nanoscale, vol. 6, pp. 8914-8918, 2014. [38] J. Chen, D. Yang, D. Song, J. Jiang, A. Ma, M. Z. Hu and C. Ni, "Recent progress in enhancing solar-to-hydrogen efficiency," Journal of Power Sources, vol. 280, pp. 649-666, 2015. [39] H. Ueng and H. Hwang, "Defect identification in undoped and phosphorus‐doped CuInS2 based on deviations from ideal chemical formula," Journal of Applied Physics, vol. 62, pp. 434-439, 1987. [40] H. Ueng and H. Hwang, "The defect structure of CuInS2. Part III: Extrinsic impurities," Journal of Physics and Chemistry of Solids, vol. 51, pp. 11-18, 1990. [41] T. Yamamoto, I. V. Luck, and R. Scheer, "Materials design of ntype CuInS2 thin films using Zn or Cd species," Applied surface science, vol. 159, pp. 350-354, 2000. [42] M. Zribi, M. Kanzari, and B. Rezig, "Effects of Na incorporation in CuInS2 thin films," The European Physical Journal Applied Physics, vol. 29, pp. 203-207, 2005. [43] M. Zribi, M. Kanzari, and B. Rezig, "Optical constants of Nadoped CuInS2 thin films," Materials Letters, vol. 60, pp. 98-103, 2006. [44] M. Zribi, M. B. Rabeh, R. Brini, M. Kanzari, and B. Rezig, 63 "Influence of Sn incorporation on the properties of CuInS2 thin films grown by vacuum evaporation method," Thin Solid Films, vol. 511, pp. 125-129, 2006. [45] S. Seeger and K. Ellmer, "Reactive magnetron sputtering of CuInS2 absorbers for thin film solar cells: problems and prospects," Thin Solid Films, vol. 517, pp. 3143-3147, 2009. [46] G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung, and T. C.-K. Yang, "The preparation and characterization of Ga-doped CuInS2 films with chemical bath deposition," Solar Energy Materials and Solar Cells, vol. 94, pp. 1790-1796, 2010. [47] C. Broussillou, M. Andrieux, M. Herbst-Ghysel, M. Jeandin, J. Jaime-Ferrer, S. Bodnar, et al., "Sulfurization of Cu–In electrodeposited precursors for CuInS2-based solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. S13-S17, 2011. [48] W. Septina, T. Harada, Y. Nose, and S. Ikeda, "Investigation of the electric structures of heterointerfaces in Pt-and In2S3-modified CuInS2 photocathodes used for sunlight-induced hydrogen evolution," ACS Applied Materials & Interfaces, vol. 7, pp. 16086- 16092, 2015. [49] H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota, and K. Domen, "Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes," Journal of Materials Chemistry A, vol. 3, pp. 8300-8307, 2015. [50] S. Peng, F. Cheng, J. Liang, Z. Tao, and J. Chen, "Facile solutioncontrolled growth of CuInS2 thin films on FTO and TiO2/FTO glass 64 substrates for photovoltaic application," Journal of Alloys and Compounds, vol. 481, pp. 786-791, 2009. [51] M. Nanu, L. Reijnen, B. Meester, J. Schoonman, and A. Goossens, "CuInS2 thin films deposited by ALD," Chemical Vapor Deposition, vol. 10, pp. 45-49, 2004. [52] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 894-897, 2011. [53] A. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L. Matisen, A. Kikas and M. Krunks, "Surface analysis of spray deposited copper indium disulfide films," Thin Solid Films, vol. 516, pp. 7110-7115, 2008. [54] I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja and A. Goossens, "Crystal quality studies of CuInS2 films prepared by spray pyrolysis," Thin Solid Films, vol. 480, pp. 82-86, 2005. [55] Y. Cai, J. C. Ho, S. K. Batabyal, W. Liu, Y. Sun, S. G. Mhaisalkar, et al., "Nanoparticle-induced grain growth of carbon-free solutionprocessed CuIn (S, Se)2 solar cell with 6% efficiency," ACS applied materials & interfaces, vol. 5, pp. 1533-1537, 2013. [56] M. Ortega-López and A. Morales-Acevedo, "Characterization of CuInS2 thin films for solar cells prepared by spray pyrolysis," Thin Solid Films, vol. 330, pp. 96-101, 1998. [57] M. Krunks, V. Mikli, O. Bijakina, H. Rebane, A. Mere, T. Varema 65 and E. Mellikov, "Composition and structure of CuInS2 films prepared by spray pyrolysis," Thin Solid Films, vol. 361, pp. 61-64, 2000. [58] M. Krunks, O. Bijakina, T. Varema, V. Mikli, and E. Mellikov, "Structural and optical properties of sprayed CuInS2 films," Thin Solid Films, vol. 338, pp. 125-130, 1999. [59] M. Zouaghi, T. B. Nasrallah, S. Marsillac, J. Bernede, and S. Belgacem, "Physico-chemical characterization of spray-deposited CuInS2 thin films," Thin Solid Films, vol. 382, pp. 39-46, 2001. [60] K. Wu and D. Wang, "Temperature‐dependent Raman investigation of CuInS2 with mixed phases of chalcopyrite and CuAu," Physica Status Solidi (a), vol. 208, pp. 2730-2736, 2011.
|