跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李孟蓓
研究生(外文):Meng-Pei Li
論文名稱:人類胚胎幹細胞在無滋養層及無異種條件的培養下於帶有生長因子的表面進行培養
論文名稱(外文):Human Embryonic Stem Cells Culture on Growth Factor-immobilized Surface under Feeder-free and Xeno-free Conditions
指導教授:樋口亞紺
指導教授(外文):Akon Higuchi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:137
中文關鍵詞:人體胚胎幹細胞生長因子肝素多能性之維持
外文關鍵詞:Human embryonic stem cellsGrowth factorsHeparinMaintenance of pluripotency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主題為: 「人體胚胎幹細胞在無滋養層及無異種條件的培養下於帶有生長因子的表面進行培養」。研究內容著重於利用已知成分之生醫材料對人體多能性幹細胞做培養。人體多能性幹細胞分為人體胚胎幹細胞以及人體誘導型多能性幹細胞兩大類,由於此等細胞於適當環境下具有優越的繁殖力以及多能性,近年來於再生醫療領域已成為相當有潛力的研究來源。然而,人體多能性幹細胞的培養成本之高,也一直是研究端及應用端面臨的困難;原因歸咎於人體多能性幹細胞生長必要之生長因子(纖維母細胞生長因子及轉化生長因子-β1),單價相當昂貴且易在溶液中受溫度干擾或變質而降解(需低溫保存),培養液之頻繁更換致使整體的培養成本居高不下。有鑑於此,本實驗的主軸除了著重於人體多能性幹細胞重要特性之維持,亦致力於培養成本之降低。基於此理念,本實驗發展出一生醫材料,試圖將生長因子吸附於培養皿表面,使生長因子的結構能被固定且穩定於培養皿表面,同時能減低培養液中生長因子的使用量,藉此降低整體培養的成本。實驗中的生醫材料設計運用了知名的蛋白質穩定物質—肝素,肝素藉由化學合成的方式固著於表面,作為生長因子吸附於材料上的媒介。人體胚胎幹細胞(細胞株型號WA09)貼附於帶有肝素及生長因子的培養皿上後,後續使用生長因子減量的培養液對WA09細胞做長期培養。本研究涵蓋了帶有生長因子的培養皿之設計、人體胚胎幹細胞於少量生長因子供應下培養之觀察及長期培養後人體胚胎幹細胞多能特性之鑑定,也於最終結果獲得最適於人體胚胎幹細胞之生醫材料的組成。
In this master thesis, “Human Embryonic Stem Cells Cultivation on Growth Factor-immobilized Surface under Feeder-free and Xeno-free Conditions”, a method was developed for culturing the hPSCs with chemically defined condition. Human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have emerged as prospective resources in regenerative medicine due to their infinite proliferation ability and pluripotency. However, general hPSCs medium containing crucial growth factors, FGF-2 and TGF-β1, which are easily in degradation in solution but are highly contributing to the proliferation and pluripotency of hPSCs, are considerably expensive, which reflects on the high expense of hPSC cultivation. Therefore, a surface immobilized with growth factors was developed not only to stabilize the growth factors on the surface but also to reduce the usage of growth factor in culture medium. In this study, a well-known protein stabilizer, heparin, was chemically immobilized on the surface to serve as binding sites of growth factors for hESC (WA09) cultivation. After absorption of the growth factors on the heparin-immobilized surface, the hESCs were cultured on the modified surface with reduced usage of growth factor in medium for long-term cultivation. It is concluded that the expansion of hESCs (WA09) with decreasing usage of growth factors system containing heparin was successfully developed and a series of pluripotency examinations for hESCs were conducted after long-term cultivation.
ABSTRACT I
摘要 II
INDEX OF CONTENT III
INDEX OF FIGURES V
INDEX OF TABLES IX
CHAPTER 1 Introduction 1
1-1 From regenerative medicine to stem cell therapy 1
1-2 Stem cell therapy 3
1-3 Stem cells and stem cell research 4
1-3-1 Potency of stem cells 5
1-4 Pluripotent stem cells (PSCs) 7
1-4-1 Embryonic stem cells (ESCs) 7
1-4-2 Induced pluripotent stem cells (iPSCs) 9
1-5 Cultivation of hPSCs 10
1-6 Niches of hPSCs 11
1-6-1 Physical parameters of hPSCs niches 12
1-6-2 Cell-cell interactions of hPSCs 13
1-6-3 Cell-biomaterial (matrix) interactions on hPSCs 14
1-6-4 Soluble factors for hPSCs cultivation 20
CHAPTER 2 Materials and Methods 30
2-1 Materials 30
2-1-1 Cell cultivation 30
2-1-2 Immunofluorescence for pluripotency expression and differentiation ability of hESCs 33
2-2 Method 35
2-2-1 Preparation of heparin-immobilized surface 35
2-2-2 hESCs culture and passage procedure 37
2-2-3 Characterization of heparin-grafted surfaces 38
2-2-4 Characterization of cells growth, pluripotency expression, and differentiation ability in vitro and in vivo 39
CHAPTER 3 Results and discussion 45
3-1 Physical method of heparin immobilization 45
3-1-1 Surface preparation and screening 45
3-1-2 hESC cultivation on the PVA-H-OVN surfaces 48
3-2 Chemical method of heparin immobilization 54
3-2-1 Surface preparation and screening of heparin grafting 55
3-2-2 hESCs culture on the heparin-immobilized surfaces under reduced usage of FGF-2 and TGF-β1 66
3-2-3 Differentiation ability of hESCs cultured on CMC-HX-rVN: EB formation in vitro analyzed by immunostaining method 75
3-2-4 Differentiation ability of hESCs cultured on CMC-HX-rVN: Terotoma formation in vivo analyzed by H&E staining 81
CHAPTER 4 Conclusion 82
REFERENCE 83
Supplemental Data - Figure 97
Supplemental Data - Table 116
Uncategorized References
1. Abouna, G.M., Ethical issues in organ and tissue transplantation. Exp Clin Transplant, 2003. 1(2): p. 125-38.
2. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. Regen Med, 2008. 3(1): p. 1-5.
3. Polak, J.M. and S. Mantalaris, Stem cells bioprocessing: An important milestone to move regenerative medicine research into the clinical arena. Pediatric Research, 2008. 63(5): p. 461-466.
4. Corona, B.T., et al., Regenerative Medicine: Basic Concepts, Current Status, and Future Applications. Journal of Investigative Medicine, 2010. 58(7): p. 849-858.
5. Mao, A.S. and D.J. Mooney, Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences, 2015. 112(47): p. 14452-14459.
6. Atala, A., Regenerative medicine strategies. Journal of Pediatric Surgery, 2012. 47(1): p. 17-28.
7. Atala, A., Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res, 2004. 7(1): p. 15-31.
8. McArdle, A., Manipulation of Stem Cells and their Micro environment for Tissue Engineering. Surgery: Current Research, 2013. 03(03).
9. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol, 2016. 17(3): p. 194-200.
10. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull, 2013. 108: p. 73-94.
11. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
12. Trounson, A., et al., Clinical trials for stem cell therapies. BMC Med, 2011. 9: p. 52.
13. Alaiti, M.A., M. Ishikawa, and M.A. Costa, Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. Translational Research, 2010. 156(3): p. 112-129.
14. Singec, I., et al., The leading edge of stem cell therapeutics. Annu Rev Med, 2007. 58: p. 313-28.
15. Vastag, B., Stem cells step closer to the clinic - Paralysis partially reversed in rats with ALS-like disease. Jama-Journal of the American Medical Association, 2001. 285(13): p. 1691-1693.
16. Androutsellis-Theotokis, A., et al., Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(32): p. 13570-13575.
17. Watt, F.M. and R.R. Driskell, The therapeutic potential of stem cells. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1537): p. 155-63.
18. Daley, G.Q., Stem cells: roadmap to the clinic. J Clin Invest, 2010. 120(1): p. 8-10.
19. Siminovitch, L., E.A. McCulloch, and J.E. Till, The Distribution of Colony-Forming Cells among Spleen Colonies. J Cell Comp Physiol, 1963. 62: p. 327-36.
20. Thomson, J.A., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998. 282(5391): p. 1145.
21. Kumar, R., et al., Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med, 2010. 1(1): p. 43-52.
22. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Journal of Stem Cell Research & Therapy, 2011. 01(03).
23. Weissman, I.L., Stem cells: units of development, units of regeneration, and units in evolution. Cell, 2000. 100(1): p. 157-68.
24. Isakson, M., et al., Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential. Stem Cells International, 2015.
25. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
26. Rodriguez, A.M., et al., The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005. 87(1): p. 125-128.
27. Williams, A.R. and J.M. Hare, Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res, 2011. 109(8): p. 923-40.
28. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-58.
29. Berdasco, M. and M. Esteller, DNA methylation in stem cell renewal and multipotency. Stem Cell Research & Therapy, 2011. 2.
30. Kamao, H., et al., Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2014. 2(2): p. 205-18.
31. Makkar, R.R., et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 2012. 379(9819): p. 895-904.
32. Kobayashi, Y., et al., Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One, 2012. 7(12): p. e52787.
33. Eggenhofer, E., et al., Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 2012. 3: p. 297.
34. Eggenhofer, E., et al., The life and fate of mesenchymal stem cells. Front Immunol, 2014. 5: p. 148.
35. Liu, X.B., et al., Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B, 2012. 13(8): p. 616-23.
36. Selvaraj, V., et al., Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends in Biotechnology, 2010. 28(4): p. 214-223.
37. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J, 2015. 13: p. 75-84.
38. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
39. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
40. Biswas, A. and R. Hutchins, Embryonic stem cells. Stem Cells Dev, 2007. 16(2): p. 213-22.
41. Bocking, A.D. and R. Harding, Fetal growth and development. 2001, Cambridge ; New York: Cambridge University Press. x, 284 p.
42. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
43. Wilmut, I., et al., Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells, 2007. 9(1): p. 3-7.
44. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-73.
45. Tada, M., et al., Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 2001. 11(19): p. 1553-8.
46. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
47. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
48. Maherali, N., et al., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007. 1(1): p. 55-70.
49. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-U1.
50. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-U2.
51. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
52. Maherali, N., et al., A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008. 3(3): p. 340-345.
53. Maherali, N. and K. Hochedlinger, Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008. 3(6): p. 595-605.
54. Okita, K., et al., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008. 322(5903): p. 949-953.
55. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
56. Gutierrez-Aranda, I., et al., Human Induced Pluripotent Stem Cells Develop Teratoma More Efficiently and Faster Than Human Embryonic Stem Cells Regardless the Site of Injection. Stem Cells, 2010. 28(9): p. 1568-1570.
57. Nori, S., et al., Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition. Stem Cell Reports, 2015. 4(3): p. 360-373.
58. Kustikova, O., et al., Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science, 2005. 308(5725): p. 1171-1174.
59. Wernig, M., et al., c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2008. 2(1): p. 10-12.
60. Kim, J.B., et al., Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008. 454(7204): p. 646-U54.
61. Huangfu, D.W., et al., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008. 26(7): p. 795-797.
62. Stadtfeld, M., et al., Induced Pluripotent Stem Cells Generated Without Viral Integration. Science, 2008. 322(5903): p. 945-949.
63. Lin, T.X., et al., A chemical platform for improved induction of human iPSCs. Nature Methods, 2009. 6(11): p. 805-U24.
64. Marion, R.M., et al., A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 2009. 460(7259): p. 1149-U119.
65. Woltjen, K., et al., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009. 458(7239): p. 766-U106.
66. Zhao, X.Y., et al., iPS cells produce viable mice through tetraploid complementation. Nature, 2009. 461(7260): p. 86-U88.
67. Kang, L., et al., Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell Research, 2011. 21(3): p. 546-549.
68. Hou, P.P., et al., Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 2013. 341(6146): p. 651-654.
69. Luo, M., et al., NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells. Stem Cells, 2013. 31(7): p. 1278-1286.
70. Rais, Y., et al., Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013. 502(7469): p. 65-+.
71. Chowdhury, F., et al., Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions. Plos One, 2010. 5(12).
72. Villa-Diaz, L.G., et al., Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p. 1-7.
73. Sato, N., et al., Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol, 2003. 260(2): p. 404-13.
74. Lane, S.W., D.A. Williams, and F.M. Watt, Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014. 32(8): p. 795-803.
75. Moore, K.A. and I.R. Lemischka, Stem cells and their niches. Science, 2006. 311(5769): p. 1880-1885.
76. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
77. Fu, J.P., et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods, 2010. 7(9): p. 733-U95.
78. Keung, A.J., et al., Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integrative Biology, 2012. 4(9): p. 1049-1058.
79. Musah, S., et al., Glycosaminoglycan-Binding Hydrogels Enable Mechanical Control of Human Pluripotent Stem Cell Self-Renewal. Acs Nano, 2012. 6(11): p. 10168-10177.
80. Sun, Y.B. and J.P. Fu, Mechanobiology: a new frontier for human pluripotent stem cells. Integrative Biology, 2013. 5(3): p. 450-457.
81. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142.
82. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater, 2010. 9(9): p. 768-78.
83. Chambers, S.M., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 2009. 27(3): p. 275-280.
84. Zoldan, J., et al., The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 2011. 32(36): p. 9612-9621.
85. Kuo, S.C. and M.P. Sheetz, Optical tweezers in cell biology. Trends Cell Biol, 1992. 2(4): p. 116-8.
86. Sniadecki, N.J., A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology, 2010. 151(2): p. 451-7.
87. Saha, S., et al., Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol, 2006. 206(1): p. 126-37.
88. Saha, S., et al., TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J, 2008. 94(10): p. 4123-33.
89. Ishizaki, T., et al., Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 2000. 57(5): p. 976-83.
90. Riento, K. and A.J. Ridley, Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol, 2003. 4(6): p. 446-56.
91. Watanabe, K., et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007. 25(6): p. 681-6.
92. Lodish, H.F., Molecular cell biology. 4th ed. 2000, New York: W.H. Freeman. xxxvi, 1084, G-17, I-36 p.
93. van Roy, F. and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci, 2008. 65(23): p. 3756-88.
94. Li, D., et al., Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol, 2010. 191(3): p. 631-44.
95. Shewan, A.M., et al., Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Molecular Biology of the Cell, 2005. 16(10): p. 4531-4542.
96. Toh, Y.C., J. Xing, and H. Yu, Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials, 2015. 50: p. 87-97.
97. AMD|AGE-RELATED MACULAR DEGENERATION. 2010.
98. Giancotti, F.G. and E. Ruoslahti, Integrin Signaling. Science, 1999. 285(5430): p. 1028.
99. Geiger, B., et al., Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol, 2001. 2(11): p. 793-805.
100. Hynes, R.O., Integrins: Bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673-687.
101. Wei, Q., et al., Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein Journal of Organic Chemistry, 2015. 11: p. 773-783.
102. Jalali, S., et al., Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci., 2001. 98: p. 1042–1046.
103. Little, L., K.E. Healy, and D. Schaffer, Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev, 2008. 108(5): p. 1787-96.
104. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends in Cell Biology, 2010. 20(12): p. 734-742.
105. Bendall, S.C., M.H. Stewart, and M. Bhatia, Human embryonic stem cells: lessons from stem cell niches in vivo. Regenerative Medicine, 2008. 3(3): p. 365-376.
106. Pierret, C., et al., Developmental cues and persistent neurogenic potential within an in vitro neural niche. Bmc Developmental Biology, 2010. 10.
107. Marie, P.J., Targeting integrins to promote bone formation and repair. Nature Reviews Endocrinology, 2013. 9(5): p. 288-295.
108. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
109. Wang, H., X. Luo, and J. Leighton, Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochem Insights, 2015. 8(Suppl 2): p. 15-21.
110. Marie, P.J., Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol, 2013. 9(5): p. 288-95.
111. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
112. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
113. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008. 375(1): p. 27-32.
114. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep, 2015. 5: p. 18136.
115. Chen, Y.M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep, 2017. 7: p. 45146.
116. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
117. Cobo, F., et al., Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: Toward an implementation of microbiological quality assurance program in stem cell banks. Cloning and Stem Cells, 2008. 10(1): p. 65-73.
118. Chen, K.G., et al., Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 2014. 14(1): p. 13-26.
119. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
120. Desai, N., P. Rambhia, and A. Gishto, Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology, 2015. 13.
121. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404.
122. Bendall, S.C., et al., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007. 448(7157): p. 1015-21.
123. Hughes, C., et al., Mass Spectrometry-based Proteomic Analysis of the Matrix Microenvironment in Pluripotent Stem Cell Culture. Molecular & Cellular Proteomics, 2012. 11(12): p. 1924-1936.
124. Vallier, L., M. Alexander, and R.A. Pedersen, Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci, 2005. 118(Pt 19): p. 4495-509.
125. Pauklin, S. and L. Vallier, Activin/Nodal signalling in stem cells. Development, 2015. 142(4): p. 607-19.
126. Oh, S.K.W. and A.B.H. Choo, Human embryonic stem cell technology: large scale cell amplification and differentiation. Cytotechnology, 2006. 50(1-3): p. 181-190.
127. Levenstein, M.E., et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006. 24(3): p. 568-74.
128. Pantoliano, M.W., et al., Multivalent Ligand-Receptor Binding Interactions in the Fibroblast Growth-Factor System Produce a Cooperative Growth-Factor and Heparin Mechanism for Receptor Dimerization. Biochemistry, 1994. 33(34): p. 10229-10248.
129. Roghani, M., et al., Heparin Increases the Affinity of Basic Fibroblast Growth-Factor for Its Receptor but Is Not Required for Binding. Journal of Biological Chemistry, 1994. 269(6): p. 3976-3984.
130. Desbaillets, I., et al., Embryoid bodies: an in vitro model of mouse embryogenesis. Experimental Physiology, 2000. 85(6): p. 645-651.
131. Sheridan, S.D., V. Surampudi, and R.R. Rao, Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency. Stem Cells International, 2012.
132. Zhang, W.Y., P.E. de Almeida, and J.C. Wu, Teratoma formation: A tool for monitoring pluripotency in stem cell research, in StemBook. 2008: Cambridge (MA).
133. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
134. Furue, M.K., et al., Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A, 2008. 105(36): p. 13409-14.
135. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. Journal of Biotechnology, 2008. 133(1): p. 146-153.
136. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
137. O'Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-1116.
138. Singh, U., et al., Novel Live Alkaline Phosphatase Substrate for Identification of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2012. 8(3): p. 1021-1029.
139. Chan, E.M., et al., Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009. 27(11): p. 1033-U100.
140. Higuchi, A., et al., Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. Journal of Materials Chemistry B, 2015. 3(41): p. 8032-8058.
141. Kurosawa, H., Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 2007. 103(5): p. 389-398.
142. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 2000. 6(2): p. 88-95.
143. Oratore, A., A.M. D'Alessandro, and G. D'Andrea, Effect of synthetic carrier ampholytes on saturation of human serum transferrin. Biochem J, 1989. 259(3): p. 909-12.
144. Wissink, M.J.B., et al., Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials, 2001. 22(2): p. 151-163.
145. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Lehninger principles of biochemistry. 4th ed. 2005, New York: W.H. Freeman.
146. Lee, M., et al., Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomater, 2016. 32: p. 138-48.
147. Zhou, P., et al., Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials, 2016. 87: p. 1-17.
148. .
149. Xu, R.H., et al., NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008. 3(2): p. 196-206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top