|
Uncategorized References 1. Abouna, G.M., Ethical issues in organ and tissue transplantation. Exp Clin Transplant, 2003. 1(2): p. 125-38. 2. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. Regen Med, 2008. 3(1): p. 1-5. 3. Polak, J.M. and S. Mantalaris, Stem cells bioprocessing: An important milestone to move regenerative medicine research into the clinical arena. Pediatric Research, 2008. 63(5): p. 461-466. 4. Corona, B.T., et al., Regenerative Medicine: Basic Concepts, Current Status, and Future Applications. Journal of Investigative Medicine, 2010. 58(7): p. 849-858. 5. Mao, A.S. and D.J. Mooney, Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences, 2015. 112(47): p. 14452-14459. 6. Atala, A., Regenerative medicine strategies. Journal of Pediatric Surgery, 2012. 47(1): p. 17-28. 7. Atala, A., Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res, 2004. 7(1): p. 15-31. 8. McArdle, A., Manipulation of Stem Cells and their Micro environment for Tissue Engineering. Surgery: Current Research, 2013. 03(03). 9. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol, 2016. 17(3): p. 194-200. 10. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull, 2013. 108: p. 73-94. 11. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22. 12. Trounson, A., et al., Clinical trials for stem cell therapies. BMC Med, 2011. 9: p. 52. 13. Alaiti, M.A., M. Ishikawa, and M.A. Costa, Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. Translational Research, 2010. 156(3): p. 112-129. 14. Singec, I., et al., The leading edge of stem cell therapeutics. Annu Rev Med, 2007. 58: p. 313-28. 15. Vastag, B., Stem cells step closer to the clinic - Paralysis partially reversed in rats with ALS-like disease. Jama-Journal of the American Medical Association, 2001. 285(13): p. 1691-1693. 16. Androutsellis-Theotokis, A., et al., Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(32): p. 13570-13575. 17. Watt, F.M. and R.R. Driskell, The therapeutic potential of stem cells. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1537): p. 155-63. 18. Daley, G.Q., Stem cells: roadmap to the clinic. J Clin Invest, 2010. 120(1): p. 8-10. 19. Siminovitch, L., E.A. McCulloch, and J.E. Till, The Distribution of Colony-Forming Cells among Spleen Colonies. J Cell Comp Physiol, 1963. 62: p. 327-36. 20. Thomson, J.A., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998. 282(5391): p. 1145. 21. Kumar, R., et al., Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med, 2010. 1(1): p. 43-52. 22. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Journal of Stem Cell Research & Therapy, 2011. 01(03). 23. Weissman, I.L., Stem cells: units of development, units of regeneration, and units in evolution. Cell, 2000. 100(1): p. 157-68. 24. Isakson, M., et al., Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential. Stem Cells International, 2015. 25. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 26. Rodriguez, A.M., et al., The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005. 87(1): p. 125-128. 27. Williams, A.R. and J.M. Hare, Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res, 2011. 109(8): p. 923-40. 28. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-58. 29. Berdasco, M. and M. Esteller, DNA methylation in stem cell renewal and multipotency. Stem Cell Research & Therapy, 2011. 2. 30. Kamao, H., et al., Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2014. 2(2): p. 205-18. 31. Makkar, R.R., et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 2012. 379(9819): p. 895-904. 32. Kobayashi, Y., et al., Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One, 2012. 7(12): p. e52787. 33. Eggenhofer, E., et al., Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 2012. 3: p. 297. 34. Eggenhofer, E., et al., The life and fate of mesenchymal stem cells. Front Immunol, 2014. 5: p. 148. 35. Liu, X.B., et al., Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B, 2012. 13(8): p. 616-23. 36. Selvaraj, V., et al., Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends in Biotechnology, 2010. 28(4): p. 214-223. 37. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J, 2015. 13: p. 75-84. 38. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6. 39. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8. 40. Biswas, A. and R. Hutchins, Embryonic stem cells. Stem Cells Dev, 2007. 16(2): p. 213-22. 41. Bocking, A.D. and R. Harding, Fetal growth and development. 2001, Cambridge ; New York: Cambridge University Press. x, 284 p. 42. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7. 43. Wilmut, I., et al., Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells, 2007. 9(1): p. 3-7. 44. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-73. 45. Tada, M., et al., Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 2001. 11(19): p. 1553-8. 46. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 47. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872. 48. Maherali, N., et al., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007. 1(1): p. 55-70. 49. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-U1. 50. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-U2. 51. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920. 52. Maherali, N., et al., A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008. 3(3): p. 340-345. 53. Maherali, N. and K. Hochedlinger, Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008. 3(6): p. 595-605. 54. Okita, K., et al., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008. 322(5903): p. 949-953. 55. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106. 56. Gutierrez-Aranda, I., et al., Human Induced Pluripotent Stem Cells Develop Teratoma More Efficiently and Faster Than Human Embryonic Stem Cells Regardless the Site of Injection. Stem Cells, 2010. 28(9): p. 1568-1570. 57. Nori, S., et al., Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition. Stem Cell Reports, 2015. 4(3): p. 360-373. 58. Kustikova, O., et al., Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science, 2005. 308(5725): p. 1171-1174. 59. Wernig, M., et al., c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2008. 2(1): p. 10-12. 60. Kim, J.B., et al., Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008. 454(7204): p. 646-U54. 61. Huangfu, D.W., et al., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008. 26(7): p. 795-797. 62. Stadtfeld, M., et al., Induced Pluripotent Stem Cells Generated Without Viral Integration. Science, 2008. 322(5903): p. 945-949. 63. Lin, T.X., et al., A chemical platform for improved induction of human iPSCs. Nature Methods, 2009. 6(11): p. 805-U24. 64. Marion, R.M., et al., A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 2009. 460(7259): p. 1149-U119. 65. Woltjen, K., et al., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009. 458(7239): p. 766-U106. 66. Zhao, X.Y., et al., iPS cells produce viable mice through tetraploid complementation. Nature, 2009. 461(7260): p. 86-U88. 67. Kang, L., et al., Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell Research, 2011. 21(3): p. 546-549. 68. Hou, P.P., et al., Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 2013. 341(6146): p. 651-654. 69. Luo, M., et al., NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells. Stem Cells, 2013. 31(7): p. 1278-1286. 70. Rais, Y., et al., Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013. 502(7469): p. 65-+. 71. Chowdhury, F., et al., Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions. Plos One, 2010. 5(12). 72. Villa-Diaz, L.G., et al., Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p. 1-7. 73. Sato, N., et al., Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol, 2003. 260(2): p. 404-13. 74. Lane, S.W., D.A. Williams, and F.M. Watt, Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014. 32(8): p. 795-803. 75. Moore, K.A. and I.R. Lemischka, Stem cells and their niches. Science, 2006. 311(5769): p. 1880-1885. 76. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035. 77. Fu, J.P., et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods, 2010. 7(9): p. 733-U95. 78. Keung, A.J., et al., Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integrative Biology, 2012. 4(9): p. 1049-1058. 79. Musah, S., et al., Glycosaminoglycan-Binding Hydrogels Enable Mechanical Control of Human Pluripotent Stem Cell Self-Renewal. Acs Nano, 2012. 6(11): p. 10168-10177. 80. Sun, Y.B. and J.P. Fu, Mechanobiology: a new frontier for human pluripotent stem cells. Integrative Biology, 2013. 5(3): p. 450-457. 81. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142. 82. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater, 2010. 9(9): p. 768-78. 83. Chambers, S.M., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 2009. 27(3): p. 275-280. 84. Zoldan, J., et al., The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 2011. 32(36): p. 9612-9621. 85. Kuo, S.C. and M.P. Sheetz, Optical tweezers in cell biology. Trends Cell Biol, 1992. 2(4): p. 116-8. 86. Sniadecki, N.J., A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology, 2010. 151(2): p. 451-7. 87. Saha, S., et al., Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol, 2006. 206(1): p. 126-37. 88. Saha, S., et al., TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J, 2008. 94(10): p. 4123-33. 89. Ishizaki, T., et al., Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 2000. 57(5): p. 976-83. 90. Riento, K. and A.J. Ridley, Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol, 2003. 4(6): p. 446-56. 91. Watanabe, K., et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007. 25(6): p. 681-6. 92. Lodish, H.F., Molecular cell biology. 4th ed. 2000, New York: W.H. Freeman. xxxvi, 1084, G-17, I-36 p. 93. van Roy, F. and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci, 2008. 65(23): p. 3756-88. 94. Li, D., et al., Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol, 2010. 191(3): p. 631-44. 95. Shewan, A.M., et al., Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Molecular Biology of the Cell, 2005. 16(10): p. 4531-4542. 96. Toh, Y.C., J. Xing, and H. Yu, Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials, 2015. 50: p. 87-97. 97. AMD|AGE-RELATED MACULAR DEGENERATION. 2010. 98. Giancotti, F.G. and E. Ruoslahti, Integrin Signaling. Science, 1999. 285(5430): p. 1028. 99. Geiger, B., et al., Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol, 2001. 2(11): p. 793-805. 100. Hynes, R.O., Integrins: Bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673-687. 101. Wei, Q., et al., Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein Journal of Organic Chemistry, 2015. 11: p. 773-783. 102. Jalali, S., et al., Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci., 2001. 98: p. 1042–1046. 103. Little, L., K.E. Healy, and D. Schaffer, Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev, 2008. 108(5): p. 1787-96. 104. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends in Cell Biology, 2010. 20(12): p. 734-742. 105. Bendall, S.C., M.H. Stewart, and M. Bhatia, Human embryonic stem cells: lessons from stem cell niches in vivo. Regenerative Medicine, 2008. 3(3): p. 365-376. 106. Pierret, C., et al., Developmental cues and persistent neurogenic potential within an in vitro neural niche. Bmc Developmental Biology, 2010. 10. 107. Marie, P.J., Targeting integrins to promote bone formation and repair. Nature Reviews Endocrinology, 2013. 9(5): p. 288-295. 108. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40. 109. Wang, H., X. Luo, and J. Leighton, Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochem Insights, 2015. 8(Suppl 2): p. 15-21. 110. Marie, P.J., Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol, 2013. 9(5): p. 288-95. 111. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374. 112. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265. 113. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008. 375(1): p. 27-32. 114. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep, 2015. 5: p. 18136. 115. Chen, Y.M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep, 2017. 7: p. 45146. 116. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974. 117. Cobo, F., et al., Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: Toward an implementation of microbiological quality assurance program in stem cell banks. Cloning and Stem Cells, 2008. 10(1): p. 65-73. 118. Chen, K.G., et al., Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 2014. 14(1): p. 13-26. 119. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6. 120. Desai, N., P. Rambhia, and A. Gishto, Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology, 2015. 13. 121. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404. 122. Bendall, S.C., et al., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007. 448(7157): p. 1015-21. 123. Hughes, C., et al., Mass Spectrometry-based Proteomic Analysis of the Matrix Microenvironment in Pluripotent Stem Cell Culture. Molecular & Cellular Proteomics, 2012. 11(12): p. 1924-1936. 124. Vallier, L., M. Alexander, and R.A. Pedersen, Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci, 2005. 118(Pt 19): p. 4495-509. 125. Pauklin, S. and L. Vallier, Activin/Nodal signalling in stem cells. Development, 2015. 142(4): p. 607-19. 126. Oh, S.K.W. and A.B.H. Choo, Human embryonic stem cell technology: large scale cell amplification and differentiation. Cytotechnology, 2006. 50(1-3): p. 181-190. 127. Levenstein, M.E., et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006. 24(3): p. 568-74. 128. Pantoliano, M.W., et al., Multivalent Ligand-Receptor Binding Interactions in the Fibroblast Growth-Factor System Produce a Cooperative Growth-Factor and Heparin Mechanism for Receptor Dimerization. Biochemistry, 1994. 33(34): p. 10229-10248. 129. Roghani, M., et al., Heparin Increases the Affinity of Basic Fibroblast Growth-Factor for Its Receptor but Is Not Required for Binding. Journal of Biological Chemistry, 1994. 269(6): p. 3976-3984. 130. Desbaillets, I., et al., Embryoid bodies: an in vitro model of mouse embryogenesis. Experimental Physiology, 2000. 85(6): p. 645-651. 131. Sheridan, S.D., V. Surampudi, and R.R. Rao, Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency. Stem Cells International, 2012. 132. Zhang, W.Y., P.E. de Almeida, and J.C. Wu, Teratoma formation: A tool for monitoring pluripotency in stem cell research, in StemBook. 2008: Cambridge (MA). 133. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75. 134. Furue, M.K., et al., Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A, 2008. 105(36): p. 13409-14. 135. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. Journal of Biotechnology, 2008. 133(1): p. 146-153. 136. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 137. O'Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-1116. 138. Singh, U., et al., Novel Live Alkaline Phosphatase Substrate for Identification of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2012. 8(3): p. 1021-1029. 139. Chan, E.M., et al., Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009. 27(11): p. 1033-U100. 140. Higuchi, A., et al., Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. Journal of Materials Chemistry B, 2015. 3(41): p. 8032-8058. 141. Kurosawa, H., Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 2007. 103(5): p. 389-398. 142. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 2000. 6(2): p. 88-95. 143. Oratore, A., A.M. D'Alessandro, and G. D'Andrea, Effect of synthetic carrier ampholytes on saturation of human serum transferrin. Biochem J, 1989. 259(3): p. 909-12. 144. Wissink, M.J.B., et al., Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials, 2001. 22(2): p. 151-163. 145. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Lehninger principles of biochemistry. 4th ed. 2005, New York: W.H. Freeman. 146. Lee, M., et al., Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomater, 2016. 32: p. 138-48. 147. Zhou, P., et al., Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials, 2016. 87: p. 1-17. 148. . 149. Xu, R.H., et al., NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008. 3(2): p. 196-206.
|