跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭皓謙
研究生(外文):Hao-Chien Cheng
論文名稱:利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究
論文名稱(外文):Investigation of Solid State Reaction and Electrodeposition Process for Perovskite Solar Cell
指導教授:張博凱張博凱引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:鈣態礦太陽能電池
外文關鍵詞:PerovskiteSolar Cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨為開發鈣鈦礦太陽能電池無毒製程。此想法始於配製一步驟旋塗法的鈣鈦礦前驅液時,發現PbI2粉末與CH3NH3I粉末於常溫下混合時可以直接反應成鈣鈦礦。因此本研究藉由控制CH3NH3I粉末與PbI2薄膜的反應時間,來探討固相反應的可行性與成膜性質,並可避免使用有毒溶劑。經過材料晶體、表面形貌及元件光電性質的分析,並加入熱退火程序優化CH3NH3PbI3鈣鈦礦膜,發展出無毒溶劑之乾式反應鈣鈦礦膜製程,並用於鈣鈦礦太陽能電池中。在p-i-n結構的鈣鈦礦太陽能電池中,蒸鍍PbI2搭配固相CH3NH3I反應製備小電池的光電轉換效率可達15.26%,5cm × 5cm之次模組效率可達11.16%。在n-i-p結構的鈣鈦礦太陽能電池中,以固相反應搭配旋塗製備之PbI2層,其小電池效率達17.74%¬,5cm × 5cm次模組可達12.27%,進一步再放大面積,製作10cm × 10cm次模組,效率達6%。
另一方面,本研究以電鍍沉積方式製備PbO與PbO2膜,再與CH3NH3I反應成CH3NH3PbI3鈣鈦礦膜,並探討CH3NH3I濃度對於電鍍製程之鈣鈦礦層的結晶與形貌影響以及用於鈣鈦礦太陽能電池的性能差異。在CH3NH3I濃度探討中得到最佳濃度為10mg/ml,其在搭配電鍍製備PbO製程與PbO2製程的電池光電轉化效率分別達到11.72%與11.05%。其中,以低濃度CH3NH3I溶液反應的鈣鈦礦結晶較大,而在高濃度CH3NH3I溶液反應時,因為會有回溶再結晶之現象,因此可以降低鈣鈦礦層的粗糙度。最後,將電鍍之PbO與PbO2膜層結合CH3NH3I固相反應,所製備之鈣鈦礦太陽能電池光電轉換效率分別可達9.15%與8.33%。
The abstract of this study is developing non-toxic perovskite solar cells fabrication process. We found that Pbl2 and CH3NH3I powder can react and form perovskite directly at room temperature. Therefore, we can investigate the feasibility of solid state reaction and film forming properties by controlling the reaction time of CH3NH3I powder and PBI2 film. In addition, toxic solvent is less needed in this process. By analyzing materials crystalline, surface morphology and photoelectric characteristics and optimizing the thermal annealing process, we are able to develop non-toxic dry process to form perovskite and apply to solar cells. In p-i-n type structure solar cells, fabricated by vapor deposited PbI2 with solid state reacted CH3NH3I, power conversion efficiency (PCE) of small size cells and 5cm × 5cm sub-modules is up to 15.26 % and 11.16 %. On the other hand, in n-i-p type structure solar cells, fabricated by spin coated PbI2 with solid state reacted CH3NN3I, PCE of small size cells and 5cm × 5cm sub-modules is up to 17.74 % and 12.27 %, respectively. Further, PCE approach to 6% when we enlarges the solar cells area to 10cm × 10cm sub-modules.
On the other hand, this study use electroplating deposition method to fabricate PbO and PbO2 film, then react with CH3NH3I to form CH3NH3PbI3 perovskite thin film. We investigate the effect of CH3NH3I concentration in electroplating process with the morphology influences and the performance of perovskite solar cells. The optimized CH3NH3I concentration is 10 mg/ml. The PCE of solar cells by PbO and PbO2 fabrication process is 11.72 % and 11.05 %. In low CH3NH3I concentration fabrication process, larger perovskite grain size can be observed. Yet, in high CH3NH3I concentration fabrication process, CH3NH3I will re-dissolve and reduce the roughness of perovskite. In the final stage, the electroplated PbO and PbO2 thin film based perovskite solar cells through solid state reaction process can reach the efficiency of 9.15 % and 8.33 %, respectively, under 100 mW/cm2 (AM1.5G).
中文摘要 I
Abstract II
謝誌   III
目錄   IV
圖目錄  VIII
表目錄  XIV
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池種類介紹 3
1.2.1 無機太陽能電池 4
1.2.2 有機太陽能電池 5
1.3 文獻回顧 8
1.3.1 鈣鈦礦 (Perovskite)的起源 8
1.3.2 n-i-p結構之鈣鈦礦太陽能電池 9
1.3.3 p-i-n結構之鈣鈦礦太陽能電池 14
1.3.4 影響鈣鈦礦薄膜形貌的因素 15
1.3.5 鈣鈦礦薄膜的沉積技術 23
1.4 研究動機 29
1.4.1 固相反應(Solid-Solid Reaction) 29
1.4.2 電鍍沉積技術(electrodeposition) 30
第二章 實驗步驟 31
2.1 實驗藥品及儀器 31
2.2 儀器分析原理 35
2.2.1 太陽光模擬器 (Solar Simulator , YSS-50A) 35
2.2.2 光激發螢光光譜儀 (Photoluminescence, PL, UniRAM)、時間解析之螢光光譜儀 ( Time-resolved photoluminescence spectrometer) 35
2.2.3 紫外光/可見光光譜儀 (UV/VIS Spectrophotometer , Hitachi U-4100) 36
2.2.4 掃描式電子顯微鏡 (SEM) 37
2.2.5 X光繞射儀 (X-Ray Diffractometer , BRUKER ) 37
2.2.6 原子力顯微鏡 (Atomic Force Microscope, AFM, SEIKO E-sweep System) 38
2.2.7 熱蒸鍍鍍膜系統 (thermal evaporation deposition) 39
2.3 鈣鈦礦材料的製備 40
2.3.1 甲基胺碘(CH3NH3I)合成 40
2.3.2 PbI2溶液配置 40
2.3.3 TiO2緻密層溶液配置 41
2.3.4 TiO2多孔層溶液配置 41
2.3.5 電子傳輸層(PC61BM)溶液配置 42
2.3.6 電洞傳輸層(Spiro-OMeTAD)溶液配置 42
2.3.7 PbO電解液配置 42
2.3.8 PbO2電解液配置 42
2.3.9 HI溶液配置 42
2.3.10 CH3NH3I溶液配置 43
2.4 鈣鈦礦太陽能電池製備方法 43
2.4.1 固相反應法 44
2.4.2 電鍍沉積法 49
第三章 結果與討論(一) 固相反應法製備鈣鈦礦膜 52
3.1 鈣鈦礦薄膜觀察與分析 52
3.1.1 材料結構分析(X-Ray Diffractometer) 53
3.1.2 表面形貌分析(SEM, AFM) 54
3.1.3 薄膜光電性質分析 58
3.2 太陽能電池效率表現 61
3.2.1 p-i-n結構電池 62
3.2.2 n-i-p結構電池 66
第四章 結果與討論(二) CH3NH3I濃度與電鍍法製備之PbO/ PbO2的反應影響 73
4.1 PbO與PbO2膜之觀察與分析 73
4.2 鈣鈦礦薄膜特性分析 74
4.2.1 材料結構分析(X-Ray Diffractometer) 74
4.2.2 表面形貌分析(SEM, AFM) 76
4.2.3 薄膜光電性質分析 78
4.3 太陽能電池效率表現 81
第五章 結果與討論(三) 電鍍製程結合固相反應法之研究 83
5.1 鈣鈦礦薄膜觀察與分析 83
5.1.1 材料結構分析(X-Ray Diffractometer) 84
5.1.2 表面形貌分析(SEM, AFM) 85
5.1.3 薄膜光電性質分析 86
5.2 太陽能電池效率表現 88
第六章 結論 90
第七章 參考文獻 92
[1] NREL efficiency chart, 2017/04/14.
[2] Ghosh, A.K. and T. Feng," Merocyanine organic solar cells". Journal of Applied Physics, 1978. 49(12): p. 5982-5989.
[3] Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, F.E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, and M. Grätzel," Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers". Nat Chem, 2014. 6(3): p. 242-247.
[4] Davidson, M.W. and G.E. Lofgren," Photomicrography in the Geological Sciences". Journal of Geological Education, 1991. 39(5): p. 403-418.
[5] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka," Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[6] Xing, G., N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum," Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3". Science, 2013. 342(6156): p. 344.
[7] Tanaka, K., T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura," Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3". Solid State Communications, 2003. 127(9–10): p. 619-623.
[8] Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park," 6.5% efficient perovskite quantum-dot-sensitized solar cell". Nanoscale, 2011. 3(10): p. 4088-4093.
[9] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park," Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports, 2012. 2: p. 591.
[10] Ball, J.M., M.M. Lee, A. Hey, and H.J. Snaith," Low-temperature processed meso-superstructured to thin-film perovskite solar cells". Energy & Environmental Science, 2013. 6(6): p. 1739-1743.
[11] Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok," Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells". Nano Letters, 2013. 13(4): p. 1764-1769.
[12] Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel," Sequential deposition as a route to high-performance perovskite-sensitized solar cells". Nature, 2013. 499(7458): p. 316-319.
[13] Liu, M., M.B. Johnston, and H.J. Snaith," Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature, 2013. 501(7467): p. 395-398.
[14] Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang," Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process". Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
[15] Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang," Interface engineering of highly efficient perovskite solar cells". Science, 2014. 345(6196): p. 542.
[16] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," High-performance photovoltaic perovskite layers fabricated through intramolecular exchange". Science, 2015.
[17] Saliba, M., T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel," Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency". Energy & Environmental Science, 2016. 9(6): p. 1989-1997.
[18] Jeng, J.-Y., Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen," CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells". Advanced Materials, 2013. 25(27): p. 3727-3732.
[19] Wang, Q., Q. Dong, T. Li, A. Gruverman, and J. Huang," Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells". Advanced Materials, 2016. 28(31): p. 6734-6739.
[20] Tan, K.W., D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner," Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells". ACS Nano, 2014. 8(5): p. 4730-4739.
[21] Dualeh, A., N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel," Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells". Advanced Functional Materials, 2014. 24(21): p. 3250-3258.
[22] Saliba, M., K.W. Tan, H. Sai, D.T. Moore, T. Scott, W. Zhang, L.A. Estroff, U. Wiesner, and H.J. Snaith," Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites". The Journal of Physical Chemistry C, 2014. 118(30): p. 17171-17177.
[23] Bi, C., Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, and J. Huang," Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing". Journal of Materials Chemistry A, 2014. 2(43): p. 18508-18514.
[24] Xu, M.-F., H. Zhang, S. Zhang, H.L. Zhu, H.-M. Su, J. Liu, K.S. Wong, L.-S. Liao, and W.C.H. Choy," A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis". Journal of Materials Chemistry A, 2015. 3(27): p. 14424-14430.
[25] Kang, R., J.-E. Kim, J.-S. Yeo, S. Lee, Y.-J. Jeon, and D.-Y. Kim," Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate". The Journal of Physical Chemistry C, 2014. 118(46): p. 26513-26520.
[26] Xiao, Z., Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang," Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement". Advanced Materials, 2014. 26(37): p. 6503-6509.
[27] Yu, H., X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, and Y. Li," Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(1): p. 321-326.
[28] Liu, J., C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau," Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell". ACS Applied Materials & Interfaces, 2015. 7(43): p. 24008-24015.
[29] Ren, Z., A. Ng, Q. Shen, H.C. Gokkaya, J. Wang, L. Yang, W.-K. Yiu, G. Bai, A.B. Djurišić, W.W.-f. Leung, J. Hao, W.K. Chan, and C. Surya," Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells". Scientific Reports, 2014. 4: p. 6752.
[30] Ng, A., Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurisic, W.W.-f. Leung, J. Hao, W.K. Chan, and C. Surya," Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers". Journal of Materials Chemistry A, 2015. 3(17): p. 9223-9231.
[31] You, J., Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang," Moisture assisted perovskite film growth for high performance solar cells". Applied Physics Letters, 2014. 105(18): p. 183902.
[32] Gao, H., C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, and Z. Zou," Nucleation and Crystal Growth of Organic–Inorganic Lead Halide Perovskites under Different Relative Humidity". ACS Applied Materials & Interfaces, 2015. 7(17): p. 9110-9117.
[33] Leguy, A.M.A., Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, and P.R.F. Barnes," Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells". Chemistry of Materials, 2015. 27(9): p. 3397-3407.
[34] Galisteo-López, J.F., M. Anaya, M.E. Calvo, and H. Míguez," Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites". The Journal of Physical Chemistry Letters, 2015. 6(12): p. 2200-2205.
[35] Raga, S.R., M.-C. Jung, M.V. Lee, M.R. Leyden, Y. Kato, and Y. Qi," Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells". Chemistry of Materials, 2015. 27(5): p. 1597-1603.
[36] Yang, B., O. Dyck, J. Poplawsky, J. Keum, S. Das, A. Puretzky, T. Aytug, P.C. Joshi, C.M. Rouleau, G. Duscher, D.B. Geohegan, and K. Xiao," Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells". Angewandte Chemie International Edition, 2015. 54(49): p. 14862-14865.
[37] Pathak, S., A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N. Noel, M. Price, S. Hüttner, N.A. Hawkins, R.H. Friend, U. Steiner, and H.J. Snaith," Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells". ACS Nano, 2015. 9(3): p. 2311-2320.
[38] Rong, Y., Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao," Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells". Nanoscale, 2015. 7(24): p. 10595-10599.
[39] Chen, H., Z. Wei, H. He, X. Zheng, K.S. Wong, and S. Yang," Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%". Advanced Energy Materials, 2016. 6(8): p. 1502087-n/a.
[40] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok," Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nat Mater, 2014. 13(9): p. 897-903.
[41] Xiao, M., F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia," A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells". Angewandte Chemie, 2014. 126(37): p. 10056-10061.
[42] Zhou, Y., M. Yang, W. Wu, A.L. Vasiliev, K. Zhu, and N.P. Padture," Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells". Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184.
[43] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park," Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells". Nat Nano, 2014. 9(11): p. 927-932.
[44] Leyden, M.R., L.K. Ono, S.R. Raga, Y. Kato, S. Wang, and Y. Qi," High performance perovskite solar cells by hybrid chemical vapor deposition". Journal of Materials Chemistry A, 2014. 2(44): p. 18742-18745.
[45] Gamliel, S., A. Dymshits, S. Aharon, E. Terkieltaub, and L. Etgar," Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells". The Journal of Physical Chemistry C, 2015. 119(34): p. 19722-19728.
[46] Deng, Y., E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang," Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers". Energy & Environmental Science, 2015. 8(5): p. 1544-1550.
[47] Hwang, K., Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, and D. Vak," Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells". Advanced Materials, 2015. 27(7): p. 1241-1247.
[48] Chen, H., Z. Wei, X. Zheng, and S. Yang," A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells". Nano Energy, 2015. 15: p. 216-226.
[49] Stranks, S.D., P.K. Nayak, W. Zhang, T. Stergiopoulos, and H.J. Snaith," Formation of Thin Films of Organic–Inorganic Perovskites for High-Efficiency Solar Cells". Angewandte Chemie International Edition, 2015. 54(11): p. 3240-3248.
[50] Song, T.-B., Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, and Y. Yang," Perovskite solar cells: film formation and properties". Journal of Materials Chemistry A, 2015. 3(17): p. 9032-9050.
[51] Chen, Q., N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang," Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications". Nano Today, 2015. 10(3): p. 355-396.
[52] Wojciechowski, K., M. Saliba, T. Leijtens, A. Abate, and H.J. Snaith," Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency". Energy & Environmental Science, 2014. 7(3): p. 1142-1147.
[53] Heo, J.H., H.J. Han, D. Kim, T.K. Ahn, and S.H. Im," Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency". Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
[54] Xiao, Z., C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang," Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers". Energy & Environmental Science, 2014. 7(8): p. 2619-2623.
[55] Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu," Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process". Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903.
[56] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," High-performance photovoltaic perovskite layers fabricated through intramolecular exchange". Science, 2015. 348(6240): p. 1234-1237.
[57] Hsieh, T.-Y., T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka," Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor". Chemical Communications, 2015. 51(68): p. 13294-13297.
[58] Yang, S., Y.C. Zheng, Y. Hou, X. Chen, Y. Chen, Y. Wang, H. Zhao, and H.G. Yang," Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization". Chemistry of Materials, 2014. 26(23): p. 6705-6710.
[59] Bakr, O.M. and O.F. Mohammed," Perovskite solar cells: Shedding light on film crystallization". Nat Mater, 2017. 16(6): p. 601-602.
[60] Zhou, H., Q. Chen, and Y. Yang," Vapor-assisted solution process for perovskite materials and solar cells". MRS Bulletin, 2015. 40(8): p. 667-673.
[61] Tavakoli, M.M., L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, and Z. Fan," Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method". Scientific Reports, 2015. 5: p. 14083.
[62] Leyden, M.R., M.V. Lee, S.R. Raga, and Y. Qi," Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations". Journal of Materials Chemistry A, 2015. 3(31): p. 16097-16103.
[63] Luo, P., Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu," A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves". Journal of Materials Chemistry A, 2015. 3(23): p. 12443-12451.
[64] Barrows, A.T., A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey," Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition". Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
[65] Das, S., B. Yang, G. Gu, P.C. Joshi, I.N. Ivanov, C.M. Rouleau, T. Aytug, D.B. Geohegan, and K. Xiao," High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing". ACS Photonics, 2015. 2(6): p. 680-686.
[66] Cui, X.-P., K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, and Y.-L. Song," Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells". Chemical Communications, 2015. 51(8): p. 1457-1460.
[67] Huang, J.-h., K.-j. Jiang, X.-p. Cui, Q.-q. Zhang, M. Gao, M.-j. Su, L.-m. Yang, and Y. Song," Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells". Scientific Reports, 2015. 5: p. 15889.
[68] Liu, T., F. Jiang, J. Tong, F. Qin, W. Meng, Y. Jiang, Z. Li, and Y. Zhou," Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH3NH2)-containing atmosphere for perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(11): p. 4305-4311.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊