|
[1] NREL efficiency chart, 2017/04/14. [2] Ghosh, A.K. and T. Feng," Merocyanine organic solar cells". Journal of Applied Physics, 1978. 49(12): p. 5982-5989. [3] Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, F.E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, and M. Grätzel," Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers". Nat Chem, 2014. 6(3): p. 242-247. [4] Davidson, M.W. and G.E. Lofgren," Photomicrography in the Geological Sciences". Journal of Geological Education, 1991. 39(5): p. 403-418. [5] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka," Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. [6] Xing, G., N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum," Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3". Science, 2013. 342(6156): p. 344. [7] Tanaka, K., T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura," Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3". Solid State Communications, 2003. 127(9–10): p. 619-623. [8] Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park," 6.5% efficient perovskite quantum-dot-sensitized solar cell". Nanoscale, 2011. 3(10): p. 4088-4093. [9] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park," Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports, 2012. 2: p. 591. [10] Ball, J.M., M.M. Lee, A. Hey, and H.J. Snaith," Low-temperature processed meso-superstructured to thin-film perovskite solar cells". Energy & Environmental Science, 2013. 6(6): p. 1739-1743. [11] Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok," Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells". Nano Letters, 2013. 13(4): p. 1764-1769. [12] Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel," Sequential deposition as a route to high-performance perovskite-sensitized solar cells". Nature, 2013. 499(7458): p. 316-319. [13] Liu, M., M.B. Johnston, and H.J. Snaith," Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature, 2013. 501(7467): p. 395-398. [14] Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang," Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process". Journal of the American Chemical Society, 2014. 136(2): p. 622-625. [15] Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang," Interface engineering of highly efficient perovskite solar cells". Science, 2014. 345(6196): p. 542. [16] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," High-performance photovoltaic perovskite layers fabricated through intramolecular exchange". Science, 2015. [17] Saliba, M., T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel," Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency". Energy & Environmental Science, 2016. 9(6): p. 1989-1997. [18] Jeng, J.-Y., Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen," CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells". Advanced Materials, 2013. 25(27): p. 3727-3732. [19] Wang, Q., Q. Dong, T. Li, A. Gruverman, and J. Huang," Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells". Advanced Materials, 2016. 28(31): p. 6734-6739. [20] Tan, K.W., D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner," Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells". ACS Nano, 2014. 8(5): p. 4730-4739. [21] Dualeh, A., N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel," Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells". Advanced Functional Materials, 2014. 24(21): p. 3250-3258. [22] Saliba, M., K.W. Tan, H. Sai, D.T. Moore, T. Scott, W. Zhang, L.A. Estroff, U. Wiesner, and H.J. Snaith," Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites". The Journal of Physical Chemistry C, 2014. 118(30): p. 17171-17177. [23] Bi, C., Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, and J. Huang," Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing". Journal of Materials Chemistry A, 2014. 2(43): p. 18508-18514. [24] Xu, M.-F., H. Zhang, S. Zhang, H.L. Zhu, H.-M. Su, J. Liu, K.S. Wong, L.-S. Liao, and W.C.H. Choy," A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis". Journal of Materials Chemistry A, 2015. 3(27): p. 14424-14430. [25] Kang, R., J.-E. Kim, J.-S. Yeo, S. Lee, Y.-J. Jeon, and D.-Y. Kim," Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate". The Journal of Physical Chemistry C, 2014. 118(46): p. 26513-26520. [26] Xiao, Z., Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang," Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement". Advanced Materials, 2014. 26(37): p. 6503-6509. [27] Yu, H., X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, and Y. Li," Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(1): p. 321-326. [28] Liu, J., C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau," Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell". ACS Applied Materials & Interfaces, 2015. 7(43): p. 24008-24015. [29] Ren, Z., A. Ng, Q. Shen, H.C. Gokkaya, J. Wang, L. Yang, W.-K. Yiu, G. Bai, A.B. Djurišić, W.W.-f. Leung, J. Hao, W.K. Chan, and C. Surya," Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells". Scientific Reports, 2014. 4: p. 6752. [30] Ng, A., Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurisic, W.W.-f. Leung, J. Hao, W.K. Chan, and C. Surya," Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers". Journal of Materials Chemistry A, 2015. 3(17): p. 9223-9231. [31] You, J., Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang," Moisture assisted perovskite film growth for high performance solar cells". Applied Physics Letters, 2014. 105(18): p. 183902. [32] Gao, H., C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, and Z. Zou," Nucleation and Crystal Growth of Organic–Inorganic Lead Halide Perovskites under Different Relative Humidity". ACS Applied Materials & Interfaces, 2015. 7(17): p. 9110-9117. [33] Leguy, A.M.A., Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, and P.R.F. Barnes," Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells". Chemistry of Materials, 2015. 27(9): p. 3397-3407. [34] Galisteo-López, J.F., M. Anaya, M.E. Calvo, and H. Míguez," Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites". The Journal of Physical Chemistry Letters, 2015. 6(12): p. 2200-2205. [35] Raga, S.R., M.-C. Jung, M.V. Lee, M.R. Leyden, Y. Kato, and Y. Qi," Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells". Chemistry of Materials, 2015. 27(5): p. 1597-1603. [36] Yang, B., O. Dyck, J. Poplawsky, J. Keum, S. Das, A. Puretzky, T. Aytug, P.C. Joshi, C.M. Rouleau, G. Duscher, D.B. Geohegan, and K. Xiao," Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells". Angewandte Chemie International Edition, 2015. 54(49): p. 14862-14865. [37] Pathak, S., A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N. Noel, M. Price, S. Hüttner, N.A. Hawkins, R.H. Friend, U. Steiner, and H.J. Snaith," Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells". ACS Nano, 2015. 9(3): p. 2311-2320. [38] Rong, Y., Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao," Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells". Nanoscale, 2015. 7(24): p. 10595-10599. [39] Chen, H., Z. Wei, H. He, X. Zheng, K.S. Wong, and S. Yang," Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%". Advanced Energy Materials, 2016. 6(8): p. 1502087-n/a. [40] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok," Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nat Mater, 2014. 13(9): p. 897-903. [41] Xiao, M., F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia," A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells". Angewandte Chemie, 2014. 126(37): p. 10056-10061. [42] Zhou, Y., M. Yang, W. Wu, A.L. Vasiliev, K. Zhu, and N.P. Padture," Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells". Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184. [43] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park," Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells". Nat Nano, 2014. 9(11): p. 927-932. [44] Leyden, M.R., L.K. Ono, S.R. Raga, Y. Kato, S. Wang, and Y. Qi," High performance perovskite solar cells by hybrid chemical vapor deposition". Journal of Materials Chemistry A, 2014. 2(44): p. 18742-18745. [45] Gamliel, S., A. Dymshits, S. Aharon, E. Terkieltaub, and L. Etgar," Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells". The Journal of Physical Chemistry C, 2015. 119(34): p. 19722-19728. [46] Deng, Y., E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang," Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers". Energy & Environmental Science, 2015. 8(5): p. 1544-1550. [47] Hwang, K., Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, and D. Vak," Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells". Advanced Materials, 2015. 27(7): p. 1241-1247. [48] Chen, H., Z. Wei, X. Zheng, and S. Yang," A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells". Nano Energy, 2015. 15: p. 216-226. [49] Stranks, S.D., P.K. Nayak, W. Zhang, T. Stergiopoulos, and H.J. Snaith," Formation of Thin Films of Organic–Inorganic Perovskites for High-Efficiency Solar Cells". Angewandte Chemie International Edition, 2015. 54(11): p. 3240-3248. [50] Song, T.-B., Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, and Y. Yang," Perovskite solar cells: film formation and properties". Journal of Materials Chemistry A, 2015. 3(17): p. 9032-9050. [51] Chen, Q., N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang," Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications". Nano Today, 2015. 10(3): p. 355-396. [52] Wojciechowski, K., M. Saliba, T. Leijtens, A. Abate, and H.J. Snaith," Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency". Energy & Environmental Science, 2014. 7(3): p. 1142-1147. [53] Heo, J.H., H.J. Han, D. Kim, T.K. Ahn, and S.H. Im," Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency". Energy & Environmental Science, 2015. 8(5): p. 1602-1608. [54] Xiao, Z., C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang," Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers". Energy & Environmental Science, 2014. 7(8): p. 2619-2623. [55] Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu," Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process". Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903. [56] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," High-performance photovoltaic perovskite layers fabricated through intramolecular exchange". Science, 2015. 348(6240): p. 1234-1237. [57] Hsieh, T.-Y., T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka," Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor". Chemical Communications, 2015. 51(68): p. 13294-13297. [58] Yang, S., Y.C. Zheng, Y. Hou, X. Chen, Y. Chen, Y. Wang, H. Zhao, and H.G. Yang," Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization". Chemistry of Materials, 2014. 26(23): p. 6705-6710. [59] Bakr, O.M. and O.F. Mohammed," Perovskite solar cells: Shedding light on film crystallization". Nat Mater, 2017. 16(6): p. 601-602. [60] Zhou, H., Q. Chen, and Y. Yang," Vapor-assisted solution process for perovskite materials and solar cells". MRS Bulletin, 2015. 40(8): p. 667-673. [61] Tavakoli, M.M., L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, and Z. Fan," Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method". Scientific Reports, 2015. 5: p. 14083. [62] Leyden, M.R., M.V. Lee, S.R. Raga, and Y. Qi," Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations". Journal of Materials Chemistry A, 2015. 3(31): p. 16097-16103. [63] Luo, P., Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu," A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves". Journal of Materials Chemistry A, 2015. 3(23): p. 12443-12451. [64] Barrows, A.T., A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey," Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition". Energy & Environmental Science, 2014. 7(9): p. 2944-2950. [65] Das, S., B. Yang, G. Gu, P.C. Joshi, I.N. Ivanov, C.M. Rouleau, T. Aytug, D.B. Geohegan, and K. Xiao," High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing". ACS Photonics, 2015. 2(6): p. 680-686. [66] Cui, X.-P., K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, and Y.-L. Song," Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells". Chemical Communications, 2015. 51(8): p. 1457-1460. [67] Huang, J.-h., K.-j. Jiang, X.-p. Cui, Q.-q. Zhang, M. Gao, M.-j. Su, L.-m. Yang, and Y. Song," Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells". Scientific Reports, 2015. 5: p. 15889. [68] Liu, T., F. Jiang, J. Tong, F. Qin, W. Meng, Y. Jiang, Z. Li, and Y. Zhou," Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH3NH2)-containing atmosphere for perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(11): p. 4305-4311.
|