跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:辛迪
研究生(外文):Cindy Mutiara Septani
論文名稱:控制Pt-Pd-C形狀大小製備燃料電池陰極觸媒並提升甲醇抵抗性
論文名稱(外文):Controlled Size and Shape of Pt-Pd-Carbon Cathode Catalyst with Improved Methanol Tolerance for Fuel Cell
指導教授:孫亞賢 博士
指導教授(外文):Ya-Sen Sun, Ph.D
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:103
中文關鍵詞:高分子
外文關鍵詞:polymercatalystfuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們使用高分子自組裝的特性來製備具有序陣列的納米金屬粒子,透過嵌段高分子的自組裝特性,將高分子微胞包覆金屬粒子,此種方法可以避免奈米金屬顆粒的聚集現象,同時可以精確的控制元件催化劑的尺寸、形狀和分布。
實驗方面,我們將金屬粒子鉑(Pt)和鈀(Pd)奈米顆粒摻入嵌段高分子的結構當中,此手法能避免金屬粒子之間的聚集,同時藉由控制兩金屬粒子形成複合材料來增進氧化還原(ORR)的效用,Pt-Pd-C的複合材料可以減少Pt和商業用之Pt/C元件主要會遇到的問題,包含甲醇的汙染問題,此複合材料能使電子數維持在4e-的條件下,同時具有良好的起始電動勢,和電流密度。複合材料之奈米結構的製備為使用熱燒結方式將交聯後之嵌段高分子元件透過高溫爐的熱燒結,製備Pt-Pd-C的元件,結構鑑定上分別使用了多項儀器來分析微觀之有序結構,RDE、SEM、XRD、XPS等,了解這些奈米材料的化學和物理性質,為我們提供了結構和化學性質與ORR電化學性能之間的知識。
In this study, the self-assembled block copolymer (BCP) nanodomains have been used to synthesize arrayed nanoparticles with well-defined morphology and spatial order embedded within nanostructured carbon matrix. This approach could avoid the aggregation of metal nanoparticles and also precisely control the size, shape, and distribution of the catalyst. The incorporation of Platinum (Pt) and Palladium (Pd) nanoparticles to the BCP nanodomains could increase the activity of Oxygen Reduction Reaction (ORR). The hybrids Pt-Pd-C has a great possibility to reduce the amount of Platinum Nanocatalyst and overall Pt/C major problems including the methanol crossover. Pt-Pd-C catalyst could reach the 4e- transfer pathway with the onset overpotential -0.001V (vs. SCE) and current density 12.5(mA/cm2). The nanostructure was fabricated by thermal pyrolysis of crosslinked poly(styrene-block-4-vinylpyridine) (PS-b-P4VP). These carbon hybrids with Pt and Pt-Pd nanoparticles were obtained after crosslinking process under UV irradiation and thermal pyrolysis. Understanding the chemical and physical nature of these nanomaterials using several material characterizations instrument including Rotating Disk Electrode (RDE), Scanning Electron Microscope (SEM), Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and X-ray Powder Diffraction (XRD) provides us the knowledge of relationship between the structural and chemical properties with ORR electrocatalytic performances.
Table of Contents

Chinese Abstract…………………………………………………………………….i
Abstract ii
Acknowledgement…………………………………………………………………iii
Table of Contents iv
List of Figures vi
List of Tables viii
CHAPTER I 1
INTRODUCTION 1
1.1 Backgrounds 1
1.2 Objectives 4
1.2.1 Succesfully Fabricate and Understand The Morphology and Electrocatalytic Activity of the Pt-C, Pt-Pd-C, and Pd-C Catalysts 4
1.2.2 Understanding the Material Characterization of Pt-C, Pt-Pd-C, and Pd-C Catalysts 4
CHAPTER II 5
LITERATURE REVIEW 5
2.1 Fuel Cells 5
2.1.1 Direct Methanol Fuel Cells (DMFCs) 6
2.1.2 Issues in DMFCs 8
2.2 Electrocatalytic Oxygen Reduction Reaction……………………………..19
2.3 Self-Assembly Block Copolymer 22
2.4 Development of Self-Assembly Block Copolymer as the Template 27
CHAPTER III 34
EXPERIMENTAL METHODS 34
3.1 Materials 34
3.2 Instruments 35
3.3 Experimental Section 35
3.4 Instrumental Analysis 37
3.4.1 Field Emission Scanning Electron Microscope (FE-SEM) 37
3.4.2 Rotating Disk Electrode 38
3.4.3 Surface-Enhanced Raman Spectroscopy 41
3.4.4 X-ray Powder Diffraction (XRD) 42
3.4.5 X-ray Photoelectron Spectroscopy (XPS) 43
3.4.6 Transmission Electron Microscopy (TEM) 44
CHAPTER IV 46
RESULTS AND DISCUSSION 46
4.1 The Morphology and Electrocatalytic Activity of the Pt-C, Pt-Pd-C, and Pd-C Catalysts 46
4.2 Material Characterization of Pt-C, Pt-Pd-C, and Pd-C Cathode Catalysts 84
CHAPTER V 84
CONCLUSION 85
REFERENCES 86
REFERENCES

[1] Rayment, C., et al., “Introduction to Fuel Cell Technology”, University of Notre Dame, 2003.11.
[2] Feng, Yan., et al., “Enhancing the Methanol Tolerance of Platinum Nanoparticles for the Cathode Reaction of Direct Methanol Fuel Cells Through a Geometric Design”. Scientific Reports, 2015, 5, 16219.
[3] Singh, R.N. et al., “An Overview of Recent Development of Platinum Based Cathode Materials for Direct Methanol Fuel Cells”, Int. J. Electrochem. Sci, 2014, 9. 5607 – 5639.
[4] Lu, Y.H., Jiun-You Liou, Chien Fu Lin, Ya Sen Sun., “Electrocatalytic Activity of A Nitrogen-Enriched Mesoporous Carbon Framework and Its Hybrids with Metal Nanoparticles Fabricated Through the Pyrolysis of Block Copolymers”, RSC Adv, 2015, 5, 105760.
[5] B. Seger , P. V. Kamat., “Electrocatalytically Active Graphene-Platinum Nanocomposites Role of 2-D Carbon Support in PEM Fuel Cells”, J. Phys. Chem. C, 2009, 113, 7990.
[6] R. Muszynski , B. Seger , P. V. Kamat ., “Decorating Graphene Sheets with Gold Nanoparticles”, J. Phys. Chem. C, 2008, 112, 5263.
[7] L. Lu , J. Liu , Y. Hu , et al., “Graphene-Stabilized Silver Nanoparticle Electrochemical Electrode for Actuator Design”, Adv. Mater. 2013, 25, 1270.
[8] I. V Lightcap , T. H. Kosel , P. V Kamat, “Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide”, Nano Lett. 2010, 10, 577.
[9] Kim, Sung-Soo. et al., “Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction”. Adv. Funct. Mater. 2014, 24, 2764–2771.
[10] Yang, Zehui. et al., “A Simple Preparation of Very High Methanol Tolerant Cathode Electrocatalyst for Direct Methanol Fuel Cell Based on Polymer-Coated Carbon Nanotube/Platinum”, Scientific Reports, 2015, 5, 12236.
[11] Vinayan, B.P. et al., “Platinum-Iron Alloy Nanoparticles Dispersed Multiwalled Carbon Nanotubes as Cathode Electrocatalyst For PEMFC”, IEEE, 2011, 6, 2037.
[12] I. W. Hamley, “Nanostructure Fabrication Using Block Copolymers”. Nanotechnology, 2003, 14, R39.
[13] U.S Department of Energy, “Fuel Cell Handbook (Seventh Edition)”, West Virginia, 2004. 106-108.
[14] Garcia, Brenda L., Vijay A. Sethuraman, John W. Weidner, et al., “Mathematical Model of Direct Methanol Fuel Cell”, ASME, 2004, 1, 43-45.
[15] Sundmacher,K., T.Schultz, S. Zhou, et al., “Dynamics of the Direct Methanol Fuel Cell (DMFC): Experiments and Model-Based Analysis”, ELSEVIER, 2001, 56, 333-341.
[16] Leng, Yang, “MATERIALS CHARACTERIZATION: Introduction to Microscopic and Spectroscopic Methods”, John Wiley & Sons (Asia) Pte Ltd, 2008, 152-155.
[17] Bard, Allen J., Larry R. Faulkner, “ Electrochemical Methods Fundamentals and Applications”, second Edition, John Wiley & SONS, Inc., 2001, 335-336.
[18] Song, Wenya., Zhongxin Chen, Chao Yang, Ziping Yang, et.al. “Carbon-Coated, Methanol-Tolerant Platinum/Graphene Catalysts For Oxygen Reduction Reaction With Excellent Long-Term Performance”, J. Mater. Chem. A, 2015, 3, 1049.
[19] Kim, Jiyoung., Jin-Sung Jang, Dong-Hyun Peck, et.al., “Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells”, Nanomaterials, 2016, 6, 148.
[20] Wang, Haibo., Thandavarayan Maiyalagan, Xin Wang. “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications”, ACS Catal. 2012, 2, 781−794.
[21] Ye, Xianggui., Zhan-Wei Li, Zhao-Yao Sun, Bamin Khomami, “Template-Free Bottom-Up Method for Fabricating Diblock Copolymer Patchy Particles”, ACS Nano, 2016, 10, 5199−5203.
[22] Qu,S., X W ZhangY Gao, JB You, et. al., “Composition Deviation of Arrays of FePt Nanoparticles Starting from poly(styrene)-poly(4-vinylpyridine) Micelles”, Nanotechnology, 2008, 19, 1-7.
[23] E, Nicole., Zander, Joshua A, Orlicki, Adam M. Rawlett.”Thermal and FTIR Characterization of Poly(4-vinylpyridine) Crosslinked with Metal Salts”, Army Research Laboratory, 2010, 3-6.
[24] Ye, X.; Niroomand, H.; Hu, S.; Khomami, B. Block Copolymer Micelle Formation in a Solvent Good for All the Blocks. Colloid Polym. Sci. 2015, 293, 2799−2805.
[25] Drelinkiewicz, A., J.W. Sobczak b, E. Sobczak c, et.al., “Physicochemical and Catalytic Properties of Pt–poly(4-vinylpyridine) Composites”, Materials Chemistry and Physics, 2009, 114, 763–773.
[26] Wang, Wei., Zangyuan Wang, Jiajun Wang, et.al., “ Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction”, Adv. Sci. 2017, 1600486, 1-9.
[27] Balb, Adriana., Francesco Gaballo, Jesus Ceballos-Torres, et.al., “Dual Application of Pd Nanoparticles Supported on Mesoporous Silica SBA-15 and MSU-2: Supported Catalysts for C–C Coupling Reactions and Cytotoxic Agents Against Human Cancer Cell Lines”, RSC Adv., 2014, 4, 54775.
[28] Ou, Lihui., “Design of Pd-Based Bimetallic Catalyst for ORR: A DFT Calculation Study”, Hindawi Publishing Corporation, 2015, 932616, 1-11.
[29] Zhou, Zhi-Min., Zhi-Gang Shao, Xiao-Ping Qin, et.al., “ Durability Study of Pt-Pd/C as PEMFC Cathode Catalyst”, International Journal of Hydrogen Energy, 2010, 35, 1719-1726.
[30] Hu, Cheng-xi., Peng Liu, Yuan Liu. “High Temperature X-Ray Diffusion Study of Sample Heating Unit”, ELSEVIER Procedia Engineering, 2011, 24,404-411.
[31] Lu, Jennifer., Sung Soo Yi, Thomas Kopley, et.al., “Fabrication of Ordered Catalytically Active Nanoparticles Derived from Block Copolymer Micelle Templates for Controllable Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 2006, 110, 6655-6660.
[32] Baylet, Alexandre., Patrice Maricot, Daniel Duprez, et.al., “In Situ Raman and In Situ XRD Analysis of PdO Reduction and Pdo Oxidation Supported On ϒ-Al2O3 Catalyst Under Different Atmospheres”, Phys. Chem. Chem. Phys., 2011, 13, 4607–4613.
[33] Gupta, Chanchal., Priyanka H. Maheswari, et.al., ”Processing of Pristine Carbon Nanotube Supported Platinum as Catalyst for PEM Fuel Cel”, Mater Renew Sustain Energy, 2014, 3, 36.
[34] Bianchini, Claudio., Pei Kang Chen. “Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells”, Chem. Rev. 2009, 109, 4183–4206.
[35] Chen, Aicheng., Cassandra Ostrom. “Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications”, Chem. Rev. 2015, 115, 11999−12044.
[36] Wang, Fangzhong., Ao Wang, Jing Chen, et.al., “Comparative Study of Pd and PdO as Cathodes for Oxygen Reduction Reaction in Intermediate Temperature Solid Oxide Fuel Cells”. International Journal of Hydrogen Energy, 2014, 39, 14421-14427.
[37] Pasrichaa, Renu., Shweta Guptaa, Amish G. Joshia, et.al., “Directed Nanoparticle Reduction on Graphene”, Materials Today, 2012, 15, 119-125.
[38] Sun, Litai., Honjing Wang, Kamel Eid, et.al., “One Step Synthesis of Dendritic Bimetallic PtPd Nanoparticles on Reduced Graphene Oxide and Its Electrocatalytic Properties”, Electrochimica Acta, 2016, 188, 845-851.
[39] Wu, Qiumei., Zhaoxia Rao, Lizhi Yuan, et.al., “Carbon Supported PdO with Improved Activity and Stability for Oxygen Reduction Reaction in Alkaline Solution”, Electrochimica Acta, 2014, 150, 157–166.
[40] Liu, Xu., Nan Chen, Bingqian Han. “Nanoparticle Cluster Gas Sensor: Pt Activated SnO2 Nanoparticles for NH3 Detection with Ultrahigh Sensitivity”, Nanoscale, 2015, 7, 14872.
[41] Kiel, Stella., Olga Grinberg, Nina Perkas, et.al., “Forming Nanoparticles of Water-Soluble Ionic Molecules and Embedding Them into Polymer and Glass Substrates”, Beilstein J. Nanotechnol. 2012, 3, 267–276.
[42] Tang, Qiwen., Luhua Jiang, Qian Jiang, et.al., “Enhanced Activity and Stability of a Au Decorated Pt/Pd-Co/C Electrocatalyst toward Oxygen Reduction Reaction”, Electrochimica Acta, 2012, 77, 104–110.
[43] Wang, Yu-Chen., Yu-Jiao Lai, Lin Song, et.al., “S-Doping of an Fe/N/C ORR Catalyst for Polymer Electrolyte Membrane Fuel Cells with High Power Density”, Angew. Chem. 2015, 127, 10045 –10048.
[44] Jeon, In-Yup., Shen Zhang, Lipeng Zhang, et.al., “Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect”, Adv. Mater. 2013, 25, 6138–6145.
[45] Zhang, Jintao., Liming Dai., “Heteroatom-Doped Graphitic Carbon Catalysts For Efficient Electrocatalysis Of Oxygen Reduction Reaction”, ACS Catal, 2015, 1-12.
[46] Masa, Justus., Anqi Zhan, Wei Xia, et.al., “Trace Metal Residues Promote the Activity of Supposedly Metal-Free Nitrogen-Modified Carbon Catalysts for the Oxygen Reduction Reaction”, Electrochemistry Communications, 2013, 34, 113–116.
[47] Mai, Viyong., Adi Eisenberg. “Self-Assembly of Block Copolymers”, Chem. Soc. Rev., 2012, 41, 5969–5985.
[48] Alexandridis, P., B. Lindman, “Amphiphilic Block Copolymers: Self-Assembly and Applications”, Elsevier, Amsterdam, 2000.
[49] Riess, Gerard., “Micellization of Block Copolymers”, Prog. Polym. Sci. 2003, 28, 1107–1170.
[50] Hernandez, J. Rondiguez., F. Checot, Y, Gnanou., “Toward ‘Smart’ Nano- Objects by Self-Assembly of Block Copolymers in Solution”, Prog. Polym. Sci., 2005, 30, 691–724.
[51] Li, Xiaowei, Yu Zhu, Zhiqing Zou, et.al., “Simple Complexing–Reduction Synthesis of Pd–Pt/C Alloy Electrocatalysts for the Oxygen Reduction Reaction”, Journal of The Electrochemical Society, 2009, 156, B1107-B1111.
[52] Noro, Atsushi., Yoshio Sageshima, Shigen Arai, Yushu Matsushita. “Preparation and Morphology Control of Block Copolymer/Metal Salt Hybrids via Solvent-Casting by Using a Solvent with Coordination Ability”, Macromolecules, 2010, 43, 5358–5364.
[53] Sageshima, Yoshio., Shigeo arai, Atsushi Noro, et.al., “Fabrication and Modification of Ordered Nanoporous Structures from Nanophase-Separated Block Copolymer/Metal Salt Hybrids”, Langmuir, 2012, 28, 17524−17529.
[54] Mikkelsen, Kyle., Blake Cassidy, Nicole Hofstetter, et.al., “Block Copolymer Templated Synthesis of Core−Shell PtAu Bimetallic Nanocatalysts for the Methanol Oxidation Reaction”, Chem. Mater. 2014, 26, 6928−6940.
[55] Song, Chiaojie., Jiujun Zhang. “PEm Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications”, Springer London, 2008, 89-134.
[56] Jin, Wei., Hao Du, Shili Zheng, Hongbin Xu, et.al., “Comparison of the Oxygen Reduction Reaction between NaOH and KOH Solutions on a Pt Electrode: The Electrolyte-Dependent Effect”, J. Phys. Chem. B. 2010, 114, 6542–6548.
[57] Nguyen, Viet Long., Michitaka Ohtaki, Takashi Matsubara et.al., “New Experimental Evidences of Pt−Pd Bimetallic Nanoparticles with Core−Shell Configuration and Highly Fine-Ordered Nanostructures by High-Resolution Electron Transmission Microscopy”, J. Phys. Chem. C, 2012, 116, 12265−1227.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊