|
1. AG, V. K.; Javvadi, S., Facial Bone Fractures in Road Traffic Accident: A Post Mortem Study. Medico-Legal Update 2016, 16 (2). 2. Marsell, R.; Einhorn, T. A., The biology of fracture healing. Injury 2011, 42 (6), 551-5. 3. Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A., Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of cellular biochemistry 2003, 88 (5), 873-84. 4. Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26 (27), 5474-91. 5. Hutmacher, D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21 (24), 2529-43. 6. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S., SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (10), 5807-5812. 7. Seo, B. M.; Miura, M.; Gronthos, S.; Bartold, P. M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P. G.; Wang, C. Y.; Shi, S., Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 2004, 364 (9429), 149-55. 8. Huang, G. T.; Sonoyama, W.; Liu, Y.; Liu, H.; Wang, S.; Shi, S., The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of endodontics 2008, 34 (6), 645-51. 9. Laino, G.; Carinci, F.; Graziano, A.; d'Aquino, R.; Lanza, V.; De Rosa, A.; Gombos, F.; Caruso, F.; Guida, L.; Rullo, R.; Menditti, D.; Papaccio, G., In vitro bone production using stem cells derived from human dental pulp. Journal of Craniofacial Surgery 2006, 17 (3), 511-5. 10. Nakashima, M.; Akamine, A., The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics 2005, 31 (10), 711-8. 11. Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A. L.; Karsenty, G., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997, 89 (5), 747-54. 12. Altman, G. H.; Horan, R. L.; Martin, I.; Farhadi, J.; Stark, P. R.; Volloch, V.; Richmond, J. C.; Vunjak-Novakovic, G.; Kaplan, D. L., Cell differentiation by mechanical stress. The FASEB Journal 2002, 16 (2), 270-2. 13. Suzuki, N.; Yoshimura, Y.; Deyama, Y.; Suzuki, K.; Kitagawa, Y., Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. International journal of molecular medicine 2008, 21 (3), 291-6. 14. Kearney, E. M.; Farrell, E.; Prendergast, P. J.; Campbell, V. A., Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Annals of biomedical engineering 2010, 38 (5), 1767-79. 15. Della Rocca, G. J., The science of ultrasound therapy for fracture healing. Indian Journal of Orthopaedics 2009, 43 (2), 121-6. 16. Sim, W. Y.; Park, S. W.; Park, S. H.; Min, B. H.; Park, S. R.; Yang, S. S., A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab on a chip 2007, 7 (12), 1775-82. 17. Henstock, J. R.; Rotherham, M.; Rose, J. B.; El Haj, A. J., Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone 2013, 53 (2), 468-77. 18. Ruff, C.; Holt, B.; Trinkaus, E., Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation. American journal of physical anthropology 2006, 129 (4), 484-98. 19. Frost, H. M., From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications. The Anatomical record 2001, 262 (4), 398-419. 20. Fukada, E.; Yasuda, I., On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan 1957, 12 (10), 1158-1162. 21. Rubinacci, A.; Black, J.; Brighton, C. T.; Friedenberg, Z. B., Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. Journal of Orthopaedic Research 1988, 6 (3), 335-45. 22. The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from J. Kyoto Med. Soc., 4:395-406, 1953. Clinical orthopaedics and related research 1977, (124), 5-8. 23. Spadaro, J. A., Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics 1997, 18 (3), 193-202. 24. Bassett, C. A.; Becker, R. O., Generation of electric potentials by bone in response to mechanical stress. Science (New York, N.Y.) 1962, 137 (3535), 1063-4. 25. Bassett, C. A. L.; Pawluk, R. J.; Becker, R. O., Effects of Electric Currents on Bone In Vivo. Nature 1964, 204 (4959), 652-654. 26. Kuzyk, P. R. T.; Schemitsch, E. H., The science of electrical stimulation therapy for fracture healing. Indian Journal of Orthopaedics 2009, 43 (2), 127-131. 27. Yasuda, I., Electrical callus and callus formation by electret. Clinical orthopaedics and related research 1977, (124), 53-6. 28. Zhai, M.; Jing, D.; Tong, S.; Wu, Y.; Wang, P.; Zeng, Z.; Shen, G.; Wang, X.; Xu, Q.; Luo, E., Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics 2016. 29. Ongaro, A.; Pellati, A.; Bagheri, L.; Fortini, C.; Setti, S.; De Mattei, M., Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 2014, 35 (6), 426-36. 30. Kim, H. J.; Jung, J.; Park, J. H.; Kim, J. H.; Ko, K. N.; Kim, C. W., Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Experimental Biology and Medicine 2013, 238 (8), 923-31. 31. Gittens, R. A.; Olivares-Navarrete, R.; Rettew, R.; Butera, R. J.; Alamgir, F. M.; Boyan, B. D.; Schwartz, Z., Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation. Bioelectromagnetics 2013, 34 (8), 599-612. 32. Park, H.; Bhalla, R.; Saigal, R.; Radisic, M.; Watson, N.; Langer, R.; Vunjak-Novakovic, G., Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine. 2008, 2 (5), 279-87. 33. Mie, M.; Endoh, T.; Yanagida, Y.; Kobatake, E.; Aizawa, M., Induction of neural differentiation by electrically stimulated gene expression of NeuroD2. Journal of biotechnology 2003, 100 (3), 231-8. 34. 郭弘偉; Guo, H. W. 直接電刺激對於人類牙髓幹細胞在骨分化過程中基因調控與分化能力影響之研究;The Effects of Direct Electrical Stimulation on Gene Regulation and Differentiation of Human Dental Pulp Stem Cells During Osteogenesis Process. 國立中央大學. 35. 陳昱君; Chen, Y. J. 人類牙髓幹細胞在直接電刺激其細胞週期與骨分化之關聯性;The Relationship between Cell Cycle and Osteogenesis of Human Dental Pulp Stem Cells under Direct Electrical Stimulation. 國立中央大學. 36. Wang, Q.; Zhong, S.; Ouyang, J., Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clinical orthopaedics and related research 1998, 348, 259-268. 37. Eapen, A.; Kulkarni, R.; Ravindran, S.; Ramachandran, A.; Sundivakkam, P.; Tiruppathi, C.; George, A., Dentin phosphophoryn activates Smad protein signaling through Ca2+-calmodulin-dependent protein kinase II in undifferentiated mesenchymal cells. The Journal of biological chemistry 2013, 288 (12), 8585-95. 38. Roh, M. R.; Jung, J. Y.; Chung, K. Y., Autologous fat transplantation for depressed linear scleroderma-induced facial atrophic scars. Dermatologic Surgery 2008, 34 (12), 1659-65. 39. Zienowicz, R. J.; Karacaoglu, E., Implant-based breast reconstruction with allograft. Plastic and reconstructive surgery 2007, 120 (2), 373-81. 40. Ifukube, T., Artificial organs: recent progress in artificial hearing and vision. The Journal of Artificial Organs 2009, 12 (1), 8-10. 41. Langer, R.; Vacanti, J. P., Tissue engineering. Science (New York, N.Y.) 1993, 260 (5110), 920-6. 42. Lutolf, M. P.; Hubbell, J. A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology 2005, 23 (1), 47-55. 43. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering Part A 2001, 7 (2), 211-28. 44. Murphy, C. M.; O'Brien, F. J.; Little, D. G.; Schindeler, A., Cell-scaffold interactions in the bone tissue engineering triad. European cells & materials 2013, 26, 120-32. 45. Watabe, T.; Miyazono, K., Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell research 2009, 19 (1), 103-15. 46. EuroStemCell. https://www.slideshare.net/eurostemcell/introducing-stemcellsfinal-jan2012. 47. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 1998, 282 (5391), 1145-7. 48. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.) 1999, 284 (5411), 143-7. 49. Aggarwal, S.; Pittenger, M. F., Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105 (4), 1815-22. 50. TICIBA. https://ticeba.wordpress.com/tag/bone-marrow/. 51. Petersen, B. E.; Bowen, W. C.; Patrene, K. D.; Mars, W. M.; Sullivan, A. K.; Murase, N.; Boggs, S. S.; Greenberger, J. S.; Goff, J. P., Bone marrow as a potential source of hepatic oval cells. Science (New York, N.Y.) 1999, 284 (5417), 1168-70. 52. Erices, A.; Conget, P.; Minguell, J. J., Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology 2000, 109 (1), 235-42. 53. Kern, S.; Eichler, H.; Stoeve, J.; Kluter, H.; Bieback, K., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells (Dayton, Ohio) 2006, 24 (5), 1294-301. 54. Zuk, P. A.; Zhu, M.; Ashjian, P.; De Ugarte, D. A.; Huang, J. I.; Mizuno, H.; Alfonso, Z. C.; Fraser, J. K.; Benhaim, P.; Hedrick, M. H., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 2002, 13 (12), 4279-95. 55. Ren, H.; Sang, Y.; Zhang, F.; Liu, Z.; Qi, N.; Chen, Y., Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy. Stem Cells International 2016, 2016, 13. 56. Gay, I. C.; Chen, S.; MacDougall, M., Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics & craniofacial research 2007, 10 (3), 149-60. 57. Sloan, A. J.; Smith, A. J., Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral diseases 2007, 13 (2), 151-7. 58. Laino, G.; d'Aquino, R.; Graziano, A.; Lanza, V.; Carinci, F.; Naro, F.; Pirozzi, G.; Papaccio, G., A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of bone and mineral research 2005, 20 (8), 1394-402. 59. Prescott, R. S.; Alsanea, R.; Fayad, M. I.; Johnson, B. R.; Wenckus, C. S.; Hao, J.; John, A. S.; George, A., In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. Journal of endodontics 2008, 34 (4), 421-6. 60. Bruder, S. P.; Jaiswal, N.; Ricalton, N. S.; Mosca, J. D.; Kraus, K. H.; Kadiyala, S., Mesenchymal stem cells in osteobiology and applied bone regeneration. Clinical orthopaedics and related research 1998, (355 Suppl), S247-56. 61. Gronthos, S.; Brahim, J.; Li, W.; Fisher, L. W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P. G.; Shi, S., Stem cell properties of human dental pulp stem cells. Journal of dental research 2002, 81 (8), 531-5. 62. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P. G.; Shi, S., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (25), 13625-30. 63. Huang, G. T.; Gronthos, S.; Shi, S., Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of dental research 2009, 88 (9), 792-806. 64. Bakopoulou, A.; Leyhausen, G.; Volk, J.; Tsiftsoglou, A.; Garefis, P.; Koidis, P.; Geurtsen, W., Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of oral biology 2011, 56 (7), 709-21. 65. Stein, G. S.; Lian, J. B.; Stein, J. L.; Van Wijnen, A. J.; Montecino, M., Transcriptional control of osteoblast growth and differentiation. Physiological reviews 1996, 76 (2), 593-629. 66. Derynck, R.; Zhang, Y.; Feng, X. H., Smads: transcriptional activators of TGF-beta responses. Cell 1998, 95 (6), 737-40. 67. Massague, J.; Seoane, J.; Wotton, D., Smad transcription factors. Genes & development 2005, 19 (23), 2783-810. 68. Wu, J. W.; Hu, M.; Chai, J.; Seoane, J.; Huse, M.; Li, C.; Rigotti, D. J.; Kyin, S.; Muir, T. W.; Fairman, R.; Massague, J.; Shi, Y., Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Molecular cell 2001, 8 (6), 1277-89. 69. Shi, Y.; Hata, A.; Lo, R. S.; Massague, J.; Pavletich, N. P., A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997, 388 (6637), 87-93. 70. Itoh, F.; Asao, H.; Sugamura, K.; Heldin, C. H.; ten Dijke, P.; Itoh, S., Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. The EMBO journal 2001, 20 (15), 4132-42. 71. Chen, G.; Deng, C.; Li, Y. P., TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International journal of biological sciences 2012, 8 (2), 272-88. 72. Wiesmann, H.; Hartig, M.; Stratmann, U.; Meyer, U.; Joos, U., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et biophysica acta 2001, 1538 (1), 28-37. 73. Tsai, M. T.; Li, W. J.; Tuan, R. S.; Chang, W. H., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research 2009, 27 (9), 1169-74. 74. Shi, G.; Rouabhia, M.; Meng, S.; Zhang, Z., Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A 2008, 84 (4), 1026-37. 75. Fini, M.; Giavaresi, G.; Carpi, A.; Nicolini, A.; Setti, S.; Giardino, R., Effects of pulsed electromagnetic fields on articular hyaline cartilage: review of experimental and clinical studies. Biomedicine & Pharmacotherapy 2005, 59 (7), 388-94. 76. Forciniti, L.; Ybarra, J., 3rd; Zaman, M. H.; Schmidt, C. E., Schwann cell response on polypyrrole substrates upon electrical stimulation. Acta biomaterialia 2014, 10 (6), 2423-33. 77. Mayer, L. D.; Wong, K. F.; Menon, K.; Chong, C.; Harrigan, P. R.; Cullis, P. R., Influence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles. Biochemistry 1988, 27 (6), 2053-60. 78. Xiong, G. M.; Do, A. T.; Wang, J. K.; Yeoh, C. L.; Yeo, K. S.; Choong, C., Development of a miniaturized stimulation device for electrical stimulation of cells. Journal of Biological Engineering 2015, 9 (1), 14. 79. Yuan, X.; Arkonac, D. E.; Chao, P. H.; Vunjak-Novakovic, G., Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific reports 2014, 4, 3674. 80. Hashimoto, S.; Sato, F.; Uemura, R.; Nakajima, A., Effect of Pulsatile Electric Field on Cultured Muscle Cells in Vitro. Journal of Systemics Cybernetics and Informatics 2012, 10 (1), 1-6. 81. Yan, Z.; Yang, G.; Cui, L.; He, X.; Kuang, W.; Wu, W.; Liu, X.; Li, L., [Effects of electrical stimulation on the differentiation of mesenchymal stem cells into cardiomyocyte-like cells]. Journal of biomedical engineering 2013, 30 (3), 556-61. 82. Liu, X.; Gilmore, K. J.; Moulton, S. E.; Wallace, G. G., Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. Journal of neural engineering 2009, 6 (6), 065002. 83. Mobini, S.; Leppik, L.; Thottakkattumana Parameswaran, V.; Barker, J. H., In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 2017, 5, e2821. 84. Tsai, M. T.; Li, W. J., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research 2009, 27 (9), 1169-1174. 85. Kim, I.; Song, J.; Song, Y.; Cho, T., Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Engineering Part A 2009, 15 (9), 2411-2422. 86. Wang, Z.; Clark, C. C.; Brighton, C. T., Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. The Journal of bone and joint surgery. American volume 2006, 88 (5), 1053-65. 87. Zhuang, H.; Wang, W.; Seldes, R. M.; Tahernia, A. D.; Fan, H.; Brighton, C. T., Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and biophysical research communications 1997, 237 (2), 225-9. 88. G., S. S., Advanced Nutrition & Human Metabolism 4th edition. 2003. 89. Brini, M.; Ottolini, D.; Calì, T.; Carafoli, E., Calcium in health and disease. In Interrelations between Essential Metal Ions and Human Diseases, Springer: 2013; pp 81-137. 90. Catterall, W. A., Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology 2011, 3 (8), a003947. 91. Wen, L.; Wang, Y.; Wang, H., L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications 2012, 424 (3), 439-445. 92. Mikoshiba, K.; Hattori, M., IP3 receptor-operated calcium entry. Science Signaling 2000, 2000, E1. 93. Birnbaumer, L., The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annual review of pharmacology and toxicology 2009, 49, 395-426. 94. Sutko, J. L.; Airey, J. A., Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiological reviews 1996, 76 (4), 1027-71. 95. Hoth, M.; Penner, R., Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992, 355 (6358), 353. 96. Miura, Y.; Henquin, J. C.; Gilon, P., Emptying of Intracellular Ca2+ Stores Stimulates Ca2+ Entry in Mouse Pancreatic β‐Cells by Both Direct and Indirect Mechanisms. The Journal of Physiology 1997, 503 (2), 387-398. 97. Pall, M. L., Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. Journal of cellular and molecular medicine 2013, 17 (8), 958-65. 98. Landsberg, J. W.; Yuan, J. X., Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. Physiology 2004, 19 (2), 44-50. 99. Lisman, J., The CaM kinase II hypothesis for the storage of synaptic memory. Trends in neurosciences 1994, 17 (10), 406-412. 100. pathway., T. C. https://lsresearch.thomsonreuters.com/maps/409/. 101. Siddappa, R.; Martens, A.; Doorn, J.; Leusink, A.; Olivo, C.; Licht, R.; van Rijn, L.; Gaspar, C.; Fodde, R.; Janssen, F.; van Blitterswijk, C.; de Boer, J., cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (20), 7281-6. 102. Drugs.com. Nifedipine. https://www.drugs.com/monograph/nifedipine.html. 103. Macmillan, D.; McCarron, J., The phospholipase C inhibitor U‐73122 inhibits Ca2+ release from the intracellular sarcoplasmic reticulum Ca2+ store by inhibiting Ca2+ pumps in smooth muscle. British journal of pharmacology 2010, 160 (6), 1295-1301. 104. Uysal, T.; Ustdal, A.; Sonmez, M. F.; Ozturk, F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. The Angle orthodontist 2009, 79 (5), 984-90. 105. Nakashima, M.; Reddi, A. H., The application of bone morphogenetic proteins to dental tissue engineering. Nature biotechnology 2003, 21 (9), 1025-1032. 106. Liu, T.; Gao, Y.; Sakamoto, K.; Minamizato, T.; Furukawa, K.; Tsukazaki, T.; Shibata, Y.; Bessho, K.; Komori, T.; Yamaguchi, A., BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. Journal of cellular physiology 2007, 211 (3), 728-35. 107. Xia, M.; Imredy, J.; Koblan, K.; Bennett, P.; Connolly, T., State-dependent inhibition of L-type calcium channels: cell-based assay in high-throughput format. Analytical biochemistry 2004, 327 (1), 74-81. 108. Wu, L.; Bauer, C. S.; Zhen, X. G.; Xie, C.; Yang, J., Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 2002, 419 (6910), 947-52. 109. Okazaki, K.; Ishikawa, T.; Inui, M.; Tada, M.; Goshima, K.; Okamoto, T.; Hidaka, H., KN-62, a specific Ca++/calmodulin-dependent protein kinase inhibitor, reversibly depresses the rate of beating of cultured fetal mouse cardiac myocytes. Journal of Pharmacology and Experimental Therapeutics 1994, 270 (3), 1319-24. 110. Hu, W. W.; Hsu, Y. T.; Cheng, Y. C., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering C 2014, 37, 28-36.
|