跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐偉軒
研究生(外文):WEI-HSUAN HSU
論文名稱:細胞色素P450 BM3 與其仿生過氯酸亞鐵系統對苯與甲苯之氧化催化選擇性的研究
論文名稱(外文):Selective oxidation of benzene and toluene mediated by cytochrome P450 BM3 and its biomimetics
指導教授:俞聖法蔡惠旭
指導教授(外文):Steve S.-F. Yu​Hui-Hsu Gavin Tsa​
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:細胞色素P450 BM3過氯酸亞鐵酵素催化仿生催化動力學同位素效應
外文關鍵詞:Cytochrome P450 BM3Iron(II) perchlorateEnzymatic catalyzationBiomimetic catalyzationKinetic Isotope effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
  本研究選擇在細胞色素P450 BM3的328號位置進行變異,將Alanine 轉換為Phenyl Alanine,使得在反應性上,較原Wild-type 提升了2.5 到4倍左右。另一方面,以突變株A74G F87V L188Q進行改變位向選擇性的測試,結果此突變株,對於甲苯氧化的選擇性由原先WT 的100% sp2產物選擇性,改變為73%的sp2產物選擇性,並在更進一步優化的3mt A328F變異株中達到了50%的sp3產物選擇性。

  再者,本次實驗使用過氯酸亞鐵佐以過氧化氫,來模擬細胞色素P450 BM3活性中心鐵離子對於受質的氧化機制。使得能以調整過氯酸亞鐵濃度、過氧化氫添加速度以及反應溫度的方式,在sp3產物選擇性可達到最高96%以及sp2產物選擇性最高75%的程度。

  最後以氘化苯與氘化甲苯輔助,評估細胞色素P450 BM3與過氯酸亞鐵動力學同位素效應,在氘化苯的氧化反應中,細胞色素P450 BM3與過氯酸亞鐵都呈現逆向二級動力學同位素效應,而在氘化甲苯的氧化反應中,則只有細胞色素P450 BM3維持逆向二級動力學同位素效應,過氯酸亞鐵在sp2產物中,則呈現正向二級動力學同位素效應。
According to our earlier study in cytochrome P450 BM3, for the oxidation of simple aromatics, we chose to mutate its amino acid residue at position 328 from alanine to
phenylalanine. The catalytic efficiency (turn over frequencies (TOF)) of toluene and benzene, mediated by this specific mutant, for the phenol and cresols production, can be increased 2.5 to 4 times higher than the wild-type strain. On the other hand, in the case of another cytochrome P450 BM3 variant, A74G F87V L188Q, except to the formation of o-cresol of toluene oxidation at sp2 position, one additional product of benzyl alcohol for sp3-selective product was observed and its ratio is 27%. Introducing one additional mutation site of A328F can enhance the sp3 product selectivity ratio up to 50%.
A biomimetic system of cytochrome P450 BM3 for the oxidation of benzene and toluene catalyzed by iron(II) perchlorate using H2O2(aq) in CH3CN was also undertaken in this study. The reactions can be facilely tuned and controlled to selectively yield either a single or double oxygenation of benzene as well as a sp3 or sp2 C–H bond oxidation of toluene.
In order to further delineate the reaction mechanisms of the oxy-functionalization at the sp3 and/or sp2 centers, for the comparison between cytochrome P450 BM3 and its
biomimetic system of Fe(ClO4)2 in an H2O2-H2O-CH3CN system, we conducted studies that included measurements of kinetic isotope effects (KIEs) by mixing C6D6 with C6H6 or C7D8 with C7H8, each in a 1:1 ratio. Our data reveal that both of the KIE data in benzene oxidations presented an inverse secondary KIE manner and, in the
case of toluene oxidation, the KIE for cytochrome P450 BM3 was also performed as Inverse secondary kinetic isotope effect (0.7-1.0). However, KIE for Fe(ClO4)2
biomimetics on the contrary was appeared as normal secondary kinetic isotope effect.
摘要 i
Abstract ii
誌謝. iii
一、導論1
芳香烴 1
 細胞色素P450(Cytochrome P450)2
 巨大芽孢桿菌(Bacillus megaterium,BM3) 4
 細胞色素P450 BM3 氧化機制 5
 細胞色素P450 BM3 位向選擇性 6
 定點變異的選擇 8
 動力學同位素效應(Kinetic isotope effect,KIE) 10
 研究目的 13
二、實驗藥品 14
三、儀器設備 17
四、實驗步驟與方法 19
 建立pET21a(DE3) Cytochrome P450 BM3 表現載體 19
 基因轉殖(Transformation) 20
 質體抽出(Plasmid extraction) 20
 定點突變(Site directed mutagenesis) 21
 蛋白質表達 27
 全細胞催化 27
 蛋白質純化28
 CBR 測量蛋白質濃度檢量線的建立 30
 以CBR 進行蛋白質濃度測量 30
 以一氧化碳對蛋白質濃度測定 31
 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 31
 菸鹼醯胺腺嘌呤二核苷酸磷酸代謝測定 33
 過氯酸亞鐵(Iron(II) perchlorate,Fe(ClO4)2)催化 34
 氣相層析法濃度檢量線的建立 34
 同位素動力學效應的測定 36
五、結果與討論 37
 全細胞催化活性測試 37
 細胞色素P450BM3 直接催化活性分析 39
 以過氯酸亞鐵為基礎在乙腈-過氧化氫的仿生催化 41
 動力學同位素效應分析 46
六、結論 50
參考文獻 52
1. Hayaishi, O.; Katagiri, M.; Rothberg, S., Mechanism of the Pyrocatechase Reaction. J. Am. Chem. Soc. 1955, 77 (20), 5450-5451.
2. Lamb, D. C.; Lei, L.; Warrilow, A. G. S.; Lepesheva, G. I.; Mullins, J. G. L.; Waterman, M. R.; Kelly, S. L., The First Virally Encoded Cytochrome P450. J. Virol. 2009, 83 (16), 8266-8269.
3. Anderson, J. L. R.; Chapman, S. K., Ligand probes for heme proteins. Dalton T 2005, (1), 13-24.
4. Roberts, G. A.; Celik, A.; Hunter, D. J. B.; Ost, T. W. B.; White, J. H.; Chapman, S. K.; Turner, N. J.; Flitsch, S. L., A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J .Biol. Chem. 2003, 278 (49), 48914-48920.
5. Vary, P. S.; Biedendieck, R.; Fuerch, T.; Meinhardt, F.; Rohde, M.; Deckwer, W. D.; Jahn, D., Bacillus megaterium from simple soil bacterium to industrial protein production host. Appl. Microbiol. Biot. 2007, 76 (5), 957-967.
6. Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A., Pivotal role of water in the mechanism of P450BM-3. Biochemistry-Us 2001, 40 (45), 13456-13465.
7. Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H., Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am. Chem. Soc. 2003, 125 (44), 13442-13450.
8. Chen, Y. S.; Luo, W. I.; Yang, C. L.; Tu, Y. J.; Chang, C. W.; Chiang, C. H.; Chang, C. Y.; Chan, S. I.; Yu, S. S., Controlled oxidation of aliphatic CH bonds in
metallo-monooxygenases: mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons. J. Inorg. Biochem. 2014, 134, 118-33.
9. Chiang, C. H.; Ramu, R.; Tu, Y. J.; Yang, C. L.; Ng, K. Y.; Luo, W. I.; Chen, C. H.; Lu, Y. Y.; Liu, C. L.; Yu, S. S. F., Regioselective Hydroxylation of C12–C15 Fatty Acids with Fluorinated Substituents by Cytochrome P450 BM3. Chemistry-A European Journal 2013, 19 (41), 13680-13691.
10. Shoji, O.; Kunimatsu, T.; Kawakami, N.; Watanabe, Y., Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew. Chem. Int. Ed Engl. 2013, 52 (26), 6606-10.
11. Kawakami, N.; Shoji, O.; Watanabe, Y., Use of Perfluorocarboxylic Acids To Trick Cytochrome P450BM3 into Initiating the Hydroxylation of Gaseous Alkanes.
Angew. Chem. Int. Edit. 2011, 50 (23), 5315-5318.
12. Yang, C. L.; Lin, C. H.; Luo, W. I.; Lee, T. L.; Ramu, R.; Ng, K. Y.; Tsai, Y. F.; Wei, G. T.; Yu, S. S. F., Mechanistic Study of the Stereoselective Hydroxylation of [2‐2H1, 3‐2H1] Butanes Catalyzed by Cytochrome P450 BM3 Variants. Chemistry-A European Journal 2017, 23 (11), 2571-2582.
13. Lewis, D. F. V., Guide to Cytochromes P450: Structure and Function. Second Edition ed.; CRC Press: 2001.
14. Whitehouse, C. J.; Yang, W.; Yorke, J. A.; Rowlatt, B. C.; Strong, A. J.; Blanford, C. F.; Bell, S. G.; Bartlam, M.; Wong, L. L.; Rao, Z., Structural Basis for the Properties of Two Single‐Site Proline Mutants of CYP102A1 (P450BM3). ChemBioChem 2010, 11 (18), 2549-2556.
15. Oliver, C. F.; Modi, S.; Sutcliffe, M. J.; Primrose, W. U.; Lian, L. Y.; Roberts, G. C. K., A single mutation in cytochrome P450 BM3 changes substrate orientation in a
catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry-Us 1997, 36 (7), 1567-1572. 16. Whitehouse, C. J. C.; Bell, S. G.; Wong, L. L., P450(BM3) (CYP102A1): connecting the dots. Chem. Soc. Rev. 2012, 41 (3), 1218-1260.
17. Shirane, N.; Sui, Z. H.; Peterson, J. A.; Demontellano, P. R. O., Cytochrome-P450(Bm-3) (Cyp102) - Regiospecificity of Oxidation of Omega-Unsaturated Fatty-Acids and Mechanism-Based Inactivation. Biochemistry-Us 1993, 32 (49), 13732-13741.
18. Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J., Crystal-Structure of Hemoprotein Domain of P450bm-3, a Prototype for Microsomal P450s. Science 1993, 261 (5122), 731-736.
19. Budde, M.; Morr, M.; Schmid, R. D.; Urlacher, V. B., Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. Chembiochem 2006, 7 (5), 789-794.
20. Carey, F. A.; Sundberg, R. J., Advanced Organic. Chemistry. Part A: Structure and Mechanisms. Third edition ed.; 1990; p 332-335.
21. Omura, T.; Sanders, E.; Estabrook, R.; Cooper, D.; Rosenthal, O., Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced
triphosphopyridine nucleotide-cytochrome P-450 reductase. Archives of Biochemistry and Biophysics 1966, 117 (3), 660-673.
22. Morimoto, Y.; Bunno, S.; Fujieda, N.; Sugimoto, H.; Itoh, S., Direct Hydroxylation of Benzene to Phenol Using Hydrogen Peroxide Catalyzed by Nickel Complexes Supported by Pyridylalkylamine Ligands. J. Am. Chem. Soc. 2015, 137
(18), 5867-5870.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 活性污泥中烷烴降解菌及其烷烴單加氧酶(AlkB)的鑑定
2. A Computational Study of Photochemistry: Dye-Sensitized Solar Cells and Ring-Opening Reactions
3. Effects of Internal Electron Withdrawing Moieties in D-A’-π-A Organic Sensitizers on Photo-physical Properties for DSSCs: A Computational Study
4. Improvement of Calcium Cation-Chloride Anion Interaction Lennard-Jones Parameters for Molecular Dynamics Simulations
5. 基因轉殖二甲苯單加氧酵素以催化烷基苯類化合物氧化選擇性的探討
6. A Computational Study of Functional Materials: Ligand Exchange Mechanisms in MOF Synthesis and Charge Transfer in D-A-π-A Organic Sensitizers in DSSCs
7. Catalytic Mechanisms of the Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein: An Umbrella Sampling QM/MM MD study
8. Improvement of Magnesium Cation-Chloride and Acetate Anion Interaction Lennard-Jones Parameters by Experimental Osmotic Pressure: Difficulty Arises from Slow Water Exchange Rate
9. Improvement of Calcium Cation-Chloride/Acetate Anion Interactions by Osmotic Pressure Simulations of Concentrated Salt Solutions: Validation by Coordination Numbers
10. Density Functional Theory Investigation of Thermal Degradation Pathways of CH3NH3PbI3 Perovskite
11. Computational Study of the Catalytic Mechanism of Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein
12. A First-Principle Study of the Thermal Degradation Mechanisms of CH3NH3PbI3 Perovskite
13. Sliding of Sso7c4 Protein on DNA Backbone Investigated by Molecular Dynamic Simulations
14. Improvement of Calcium and Magnesium Cation-Anion Interaction Force Fields for Electrolyte Simulations
15. 利用細胞色素P450 BM3突變株進行芳香族化合物選擇性的羥化反應與碳穩定同位素分篩之研究