跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詩潔
研究生(外文):Shi-Jie Lin
論文名稱:針對BTI系列染料所敏化之元件於電解質優化之研究
指導教授:吳春桂吳春桂引用關係
指導教授(外文):Chun-Guey Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:90
中文關鍵詞:電解質染料敏化太陽能電池
外文關鍵詞:electrolytedye-sensitized solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池(dye-sensitized solar cells, DSC)中電解液扮演著傳遞載子和再生染料的功用,I-/I3-是目前最常見的氧化還原對,而常見的共軛陽離子為imidazolium和lithium。共軛陽離子或其他添加物能調整TiO2傳導電帶能階位置與增加TiO2膜表面覆蓋度,進而影響元件的光伏表現。本研究主要是藉由調變電解質中各成分的濃度,找出應用於本實驗室所開發之BTI系列有機染料的最佳電解質組成。BTI系列染料的LUMO能階都很低,沒有足夠驅動力將電子從染料的LUMO注入到TiO2傳導電帶能階,因此電解質成分的優化須考慮周全。以BTI-1染料為例,其LUMO只比TiO2傳導電帶能階高0.12 eV,當電解質組成條件為(0.1 M LiI, 0.6 M BMII, 0.5 M GuSCN, 0.5 M tBP, 30 mM I2)時效率只有1.74 %,但提高LiI、BMII及GuSCN濃度到 (1.0 M LiI, 1.2 M BMII, 1.0 M GuSCN)時,效率增加至4.02 %。主要是因為Li+可以降低TiO2傳導電帶能階,提高電子注入效率,增加元件之Jsc。此外,本研究也發現有兩層散射層的TiO2膜,相較一層散射層表面較平整,可增加元件之FF,因此效率也較高。
In dye-sensitized solar cells (DSC), electrolyte plays the role of transferring carrier to the counter electrode and the regeneration of the oxidized dye. The most common electrolyte used in DSC is iodide/triiodide (I-/I3-) redox couple with Imidazolium and lithium as counter cations. Counter cations and other additives in the electrolyte can adjust the level of TiO2 conduction band edge or protect the surface of TiO2 electrode to affect the photovoltaic performance of the correspond cells. The objective of this study is to seek an optimal electrolyte components to be used for a series of organic BTI-X sensitizers prepared in our Lab. These dye molecules have low LUMO level, therefore the electrolyte used should be concerned very carefully. For example BTI-1, when the electrolyte composition condition is 0.1 M LiI, 0.6 M BMII, 0.5 M GuSCN, 0.5 M tBP, 30 mM I2 the efficiency of BTI-1 base DSC is 1.74%. When the concentrations of LiI, BMII and GuSCN increase to 1.0 M LiI, 1.2 M BMII, 1.0 M GuSCN, respectively, the efficiency of the corresponding device increases to 4.02%. This result is attributed to the lowering of the TiO2 conduction band edge improvethe electrons injection from excited dye to TiO2. In addition, the study also found that cell used TiO2 film with two scattering layers shows higher FF, due to the TiO2 film with two scattering is smoother than that with one scattering layers.
中文摘要I
AbstractII
謝誌IV
目錄V
圖目錄IX
表目錄XIII
第一章、序論 1
1-1前言 1
1-2染料敏化太陽能電池工作原理 2
1-3染料敏化太陽能電池構造 4
1-4光電極 5
1-4-1光電極中TiO2膜的形貌 5
1-4-2光電極中TiO2奈米粒子的粒徑大小對所組裝之元件的光電轉換效率之影響 6
1-4-3光電極中TiO2膜的厚度對所組裝之元件的光電轉換效率影響 8
1-4-4染料(Dye) 9
1-5對電極 12
1-6電解質 13
1-6-1液態電解質之有機溶劑 15
1-6-2液態電解質中之氧化還原對 16
1-6-3添加劑 17
1-7研究動機 24
第二章、實驗方法 26
2-1實驗藥品與儀器 26
2-1-1本實驗所用到的藥品 26
2-1-2本實驗所用到的材料 27
2-1-3本實驗所用到的儀器 27
2-2 TiO2奈米粒子的合成與漿料製備 28
2-2-1 TiO2奈米粒子凝膠合成 28
2-2-2適用於網印鍍膜之二氧化鈦漿料的製備 29
2-3染料敏化太陽能電池的組裝 30
2-3-1光電極的製備 30
2-3-2 Pt對電極的製備 32
2-3-3染料溶液的配製 33
2-3-4電解液的配製 33
2-4儀器分析與樣品製備 35
2-4-1太陽光模擬器及光電轉換效率測量 35
2-4-2太陽能電池外部量子效率量測 35
2-4-3交流阻抗分析儀 36
2-4-4紫外光/可見光/近紅外光吸收光譜 38
2-4-5光強度調制光電流/光電壓分析儀 39
2-4-6探針式輪廓儀 40
第三章、結果與討論 41
3-1 以BTI-1為敏化劑之元件最佳化條件探討 41
3-1-1 染料溶液中共吸附劑CDCA濃度對元件光電轉換效率的影響 41
3-1-2 電解質中LiI對元件光電轉換效率的影響 43
3-1-3 電解質中BMII濃度改變對元件效率的影響 45
3-1-4 電解質中GuSCN濃度對元件光電轉換效率的影響 47
3-1-5電解質中tBP濃度對元件光電轉換效率的影響 49
3-1-6 TiO2膜的厚度對元件光電轉換效率的影響 50
3-2 BTI系列染料所敏化之元件的光電表現 55
3-2-1 BTI系列染料所敏化之DSC元件的IPCE探討 57
3-2-3 BTI系列染料所敏化之DSC元件中電子在TiO2膜上的擴散係數 59
3-2-4 BTI系列染料所敏化之元件的串聯電阻與各介面電阻 62
第四章、結論 64
參考文獻 65
1.http://www.feu.edu.tw/adms/aao/aao95/jfeu/30/3002/300205.pdf (2017年08月14日)
2.https://www.nrel.gov/pv/assets/images/efficiency-chart.png (2017年08月14日)
3.http://m.qualenergia.it/content/dye-sensitzed-solar-cells rival-conven- tional-cell-efficiency (2017年08月14日)
4.H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402-403.
5.B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-739.
6.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
7.M. Law, L.-E. Greene, J.-C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells “, Nature Mater., 2005, 4, 455-459.
8.V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Mater. Sci. Eng. R, 2009, 63, 81-99.
9.L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan, L. Liang and K. Wang, “Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules”, J. Phys. Chem., 2007, 111, 358-362.
10.K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa “Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Solar Energy Materials & Solar Cells, 2000, 64, 115-134.
11.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, “ Dye-Sensitized Solar Cells”, Chem. Rev., 2010, 110, 6595-6663.
12.http://rredc.nrel.gov/solar/spectra/am1.5/. (2017年08月14日)
13.M.-K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, “Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
14.P. Péchy, T. Renouard, S.-M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.-B. Deacon, C.-A. Bignozzi and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
15.M. Grätzel, “Recent Advances in Sensitized Mesoscopic SolarCells”, Acc. Chem. Res., 2009, 42, 1788-1798.
16.K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawab and M. Hanaya “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894-15897.
17.S.-M. Feldt, G. Wang, G. Boschloo and A. Hagfeldt, “Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples”, J. Phys. Chem. C, 2011, 115, 21500-21507.
18.A. Hauch, A. Georg, “Diffusion in the electrolyte and charge transfer reaction at the platinum electrode in dye-sensitized solar cells“, Electrochim. Acta., 2001, 46, 3457-3466.
19.李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學2014年碩士論文.
20.H. Tian and L. Sun, “Iodine-free redox couples for dye-sensitized solar cells.”, J. Mater. Chem., 2011, 21, 10592-10601.15.
21.S. Yanagida, Y. Yu and K. Manseki, “Iodine/Iodide-Free Dye- Sensitized Solar Cells”, Acc. Chem. Res., 2009, 42, 1827-1838.
22.J. Cong, X. Yang, L. Kloob and L. Sun, “Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized.”, Energy Enviro. Sci., 2012, 5, 9180-9194.
23.A. Fukui, R. Komiya, R. Yamanaka, A. Islam and L. Han, “Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell”, Solar Energy Materials & Solar Cells, 2006, 90, 649-658.
24.L.- M. Peter, “Dye-sensitized nanocrystalline solar cells”, Phys. Chem. Chem. Phys., 2007, 9, 2630-2642.
25.R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, and K. S. Schanze, “ Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, Appl. Mater. Interfaces, 2014, 6, 8715-8722.
26.G. Schlichthorl, S.-Y. Huang, J. Sprague and A.-J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 1997,101, 8141-8155.
27.C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, “Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
28.Y. Shiac, Y. Wang, M. Zhang and X. Dong “Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium”, Phys. Chem. Chem. Phys., 2011, 13, 14590-14597.
29.S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “Role of Electrolytes on Charge Recombination in Dye Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 2005, 109, 3480-3487.
30.C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, “Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
31.C. E. Richards, A. Y. Anderson, S. Martiniani, ChunHung Law and B. C. O’Regan, “The Mechanism of Iodine Reduction by TiO2 Electrons and the Kinetics of Recombination in Dye-Sensitized Solar Cells”, J. Phys. Chem. Lett., 2012, 3, 1980-1984.
32.http://www.ma-tek.com/zh-tw/services/index/Pro_category_06/207_9 (2017年08月14日)
33.J.-G. Chen, C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu and K.-C. Ho, “On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1”, Solar Energy Materials & Solar Cells, 2008, 92, 1723-1727.
34.T. Wei, X. Sun, X. Li, H. Ågren and Y. Xie, “Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells”, Appl. Mater. Interfaces, 2015, 7, 21956-21965.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊