跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張淵翔
研究生(外文):Yuan-Hsiang Chang
論文名稱:地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析
論文名稱(外文):Investigation of high-temporal aerosol optical depth retrieving with Himawari-8 satellite data
指導教授:林唐煌林唐煌引用關係
指導教授(外文):Tang-Huang Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:遙測科技碩士學位學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:141
中文關鍵詞:氣膠光學厚度向日葵八號衛星/高像素成像儀模糊效應高時間疊代對比演算法
外文關鍵詞:Aerosol Optical DepthAHI/Himawari-8Contrast Reduction methodTime Series Iteration AlgorithmAERONETMODIS
相關次數:
  • 被引用被引用:4
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
最新一代地球同步氣象衛星—向日葵八號(Himawari-8, H-8)已於2014年發射,並在2015年7月4日正式運作,其裝載著高像素成像儀(Advanced Himawari Imager, AHI),可提供高達16個可見光和紅外波段的光學頻道、1公里空間解析度以及涵蓋整個東亞和太平洋地區每10分鐘超高時間解析度的觀測資料,因此若能建立氣膠光學厚度(Aerosol Optical Depth, AOD)的反演模式,對於時、空變化劇烈之大氣懸浮微粒濃度與空氣品質的即時監測極具效益,此亦為本研究的主要目標。基於氣膠的散射與吸收效應在影像所造成的模糊效應,配合參考影像之反射率及氣膠光學厚度資料之建置,本研究嘗試以時間序列疊代的對比演算法,應用H-8觀測影像即時反演目標區域之氣膠光學厚度。
在與MODerate-resolution Imaging Spectroradiometer(MODIS)的氣膠產品比較後,顯示本研究可有效地提供氣膠的空間分布特性,而相對於地面測站AErosol Robotic NETwork(AERONET)點的觀測資料,雖有有些微高、低估的情形發生,研判為受到移動視窗內的雲蔭比例以及地物種類複雜程度之影響,導致反演過程中有些許的誤差產生,但整體的反演結果還是具備相當之準確性。後續亦將改進移動視窗像元的篩選及太陽入射透射率的修正,期能藉由地球同步衛星H-8的觀測協助,準確地提供大範圍高時間解析的氣膠光學厚度動態資料,以利空氣品質的即時監測應用。
The new generation geostationary weather satellite Himawari-8 (H-8) was launched in 2014, and operated on 4 July 2015. The onboard Advanced Himawari Imager (AHI) can provide 16 optical spectral bands with higher spatial resolution (1km x 1km) over East Asian and West Pacific areas every 10 minutes. The broad and highly frequent observations are powerful to monitor the large scale atmospheric environment instantaneously, such as the particle matter (PM) concentration in terms of aerosol optical depth (AOD). Therefore, this study focuses on retrieving AOD from AHI images. Based on the pre-constructed datasets of clear-sky reflectance and AOD as the reference, the Contrast Reduction Method (CRM) with Time Series Iteration Algorithm (TSIA) is explored for AOD retrievals from AHI image after cloud masking.
The results show the consistency with MODerate-resolution Imaging Spectroradiometer (MODIS) AOD products in the pattern of spatial distribution. Although the magnitude of retrieved AODs is slightly underestimated/overestimated compared to AErosol Robotic NETwork (AERONET) in situ measurements, which principally caused from the effects of surface texture and cloud proportion in each moving window, the overall accuracy still indicates high practicability of proposed algorithm in providing different spectral bands AOD distribution from AHI/H-8 data. The improvement of proposed approach for H-8 AOD retrieval will keep working on, such as the pixel filtering within the moving window and the correction of solar incoming transmittance. Then the application to instantaneous monitor of the regional particle matter (PM) concentration for air quality with AHI/H-8 data could be expected.
摘要 I
Abstract III
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2研究目的與動機 3
第二章 文獻回顧 5
2.1 氣膠對於大氣之輻射效應 5
2.2 氣膠光學厚度 7
2.3 氣膠光學厚度之反演 8
第三章 資料收集與處理 14
3.1 資料收集 14
3.1.1向日葵八號衛星(Himawari-8)資料 14
3.1.2 MODIS-Terra/Aqua氣膠產品 18
3.1.3 AERONET地面觀測資料 20
3.2 研究個案之介紹 23
3.3 資料處理 24
3.3.1 參考影像反射率資料庫之建立 24
3.3.2 參考影像氣膠光學厚度資料庫之建立 26
第四章 理論與研究方法 28
4.1大氣輻射傳輸理論 28
4.2 對比法 29
4.2.1離散係數法 30
4.2.2結構函數法 32
4.2.3標準化結構函數法 35
4.2.4對比法公式驗證 36
4.2.5高時間解析影像序列疊代法修正與應用 42
4.2.6最佳化視窗大小選擇 43
4.3 研究方法之限制 45
4.4 可行性分析 46
4.5 研究架構 49
第五章 結果與討論 51
5.1結果與測站資料比對及誤差分析 51
5.1.1高時間解析序列疊代—離散係數法 51
5.1.2高時間解析序列疊代—標準化結構函數法 69
5.1.3綜合討論 86
5.2結果與MODIS產品資料比對及誤差分析 87
5.2.1高時間解析序列疊代—離散係數法 87
5.2.2綜合討論 94
第六章 結論與未來展望 98
6.1 結論 98
6.2 未來展望 106
參考文獻 109
1. Bessho, K., HAYASHI, M., IKEDA, A., INOUE, H., KUMAGAI, Y., MIYAKAWA, T., ... & SASAKI, Y. (2016). An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183.
2. Borde, R., Ramon, D., Schmechtig, C., & Santer, R. (2003). Extension of the DDV concept to retrieve aerosol properties over land from the Modular Optoelectronic Scanner (MOS) sensor. International Journal of Remote Sensing, 24(7), 1439-1467.
3. Deschamps, P. Y., Duhaut, P., Rouquet, M. C., & Tanre, D. (1984). Demonstration, analysis, and correction of atmospheric effects on Landsat or SPOT multispectral data. Spectral signatures of objects in remote sensing, 709-722.
4. Grosso, N., & Paronis, D. (2012). Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements. Atmospheric Research, 116, 33-45.
5. Heidinger, A., Walther, A., Botambekov, D., Straka III, W., & Wanzong, S. (2014). The Clouds from AVHRR Extended User’s Guide Version, 5.4.1.
6. Herman, J. R., & Celarier, E. A. (1997). Earth surface reflectivity climatology at 340–380 nm from TOMS data. Journal of Geophysical Research: Atmospheres, 102(D23), 28003-28011.
7. Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., ... & Tsay, S. C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296-9315.
8. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569.
9. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180-3195.
10. Japan Meteorological Agency. (2015) Himawari-8/9 Himawari Standard Data User’s Guide version, 1.2.
11. JMA Geostationary Meteorological Satellite System for Himawari-8/9. (n.d.) Retrieved February 13, 2017, from http://www.jma-net.go.jp/msc/en/index.html
12. Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., ... & Levy, R. C. (2007). Satellite‐derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research: Atmospheres, 112(D18).
13. Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
14. Kleidman, R. G., A. Smirnov, R. C. Levy, S. Mattoo, and D. Tanré, 2012: Evaluation and wind speed dependence of MODIS aerosol retrievals over open ocean. IEEE Trans. Geosci. Remote Sens., 50, 429–435.
15. Knapp, K. R. (2002). Quantification of aerosol signal in GOES 8 visible imagery over the United States. Journal of Geophysical Research: Atmospheres, 107(D20).
16. Kokhanovsky, A. A. (2009). Satellite aerosol remote sensing over land. G. Leeuw (Ed.). Berlin: Springer.
17. Laszlo, I., Ciren, P., Liu, H., Kondragunta, S., Tarpley, J. D., & Goldberg, M. D. (2008). Remote sensing of aerosol and radiation from geostationary satellites. Advances in Space Research, 41(11), 1882-1893.
18. Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 10399–10420.
19. Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989.
20. Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13).
21. Liu, C. H., Chen, A. J., & Liu, G. R. (1996). An image-based retrieval algorithm of aerosol characteristics and surface reflectance for satellite images. International Journal of Remote Sensing, 17(17), 3477-3500.
22. Lyapustin, A., and Wang, Y. (2007). MAIAC-Multi-Angle Implementation of Atmospheric Correction for MODIS, pp. 69-100, In Satellite aerosol remote sensing over land.
23. NASA Goddard Space Flight Center Climate & Radiation Laboratory. (2014). MODIS Atmospheres webinar series #4: Collection 6 e-Deep Blue/Dark Target comparison and ‘merged’ aerosol products. Retrieved April 20, 2017, from https://modis-atmos.gsfc.nasa.gov/Webinar2014/MODIS_Collection6_week4_DTDBmerge.pdf
24. NASA Jet Propulsion Laboratory California institute of Technology. (2012). ASTER Global Digital Elevation Map Announcement. Retrieved April 20, 2017, from https://asterweb.jpl.nasa.gov/gdem.asp
25. NASA. (n.d.) About MODIS. Retrieved February 13, 2017, from https://modis.gsfc.nasa.gov/about/
26. NASA. Goddard Space Flight Center. AEROSOL ROBOTIC NETWORK. (2017) Retrieved February 13, 2017, from https://aeronet.gsfc.nasa.gov/new_web/index.html
27. NASA. LAADS DAAC. (n.d.) Retrieved February 13, 2017, from https://ladsweb.nascom.nasa.gov/search/index.html
28. NOAA-AWG Real-time Cloud Products and Images from CLAVR-x. (n.d.) Retrieved February 13, 2017, from http://cimss.ssec.wisc.edu/clavrx/google_earth_main.html
29. Pokrovsky, O., & Roujean, J. L. (2003). Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sensing of Environment, 84(1), 100-119.
30. Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., ... & Eck, T. F. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the atmospheric sciences, 62(4), 947-973.
31. Retalis, A., & Sifakis, N. (2010). Urban aerosol mapping over Athens using the differential textural analysis (DTA) algorithm on MERIS-ENVISAT data. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 17-25.
32. Sano, I., Mukai, S., Okada, Y., Holben, B. N., Ohta, S., & Takamura, T. (2003). Optical properties of aerosols during APEX and ACE‐Asia experiments. Journal of Geophysical Research: Atmospheres, 108(D23).
33. Sayer, A. M., Hsu, N. C., Bettenhausen, C., Lee, J., Redemann, J., Schmid, B., & Shinozuka, Y. (2016). Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. Journal of Geophysical Research: Atmospheres, 121(9), 4830-4854.
34. Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. J. (2014). MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24).
35. Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
36. Tanré, D., Bréon, F. M., Deuzé, J. L., Dubovik, O., Ducos, F., François, P., ... & Waquet, F. (2011). Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric Measurement Techniques, 4(7), 1383-1395.
37. Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964.
38. UESAWA Daisaku. (2016). Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. METEOROLOGICAL SATELLITE CENTER TECHNICAL NOTE, No.61.
39. Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3.
40. Wikipedia. Aqua(satellite). (n.d.) Retrieved April 19, 2017, from https://en.wikipedia.org/wiki/Aqua_(satellite)
41. Wikipedia. Terra(satellite). (n.d.) Retrieved April 19, 2017, from https://en.wikipedia.org/wiki/Terra_(satellite)
42. Wu, Y., de Graaf, M., & Menenti, M. (2016). Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction. Atmospheric Measurement Techniques, 9(11), 5575.
43. Yang, L., Xue, Y., Guang, J., Kazemian, H., Zhang, J., & Li, C. (2014). Improved Aerosol Optical Depth and Ångstrom Exponent Retrieval Over Land From MODIS Based on the Non-Lambertian Forward Model. IEEE Geoscience and Remote Sensing Letters, 11(9), 1629-1633.
44. 朱琳, 孙林, 杨磊, 徐菲菲, & 徐青山. (2016). 结构函数法反演气溶胶光学厚度中像元的间隔设置. 遥感学报, 20(4), 528-539.
45. 李宗庭,(2016)。對數常態分布在氣膠消光係數廓線擬合之應用。國立中央大學遙測科技碩士學位學程碩士論文,中壢。
46. 林唐煌, 劉振榮, & 陳哲俊. (1998). 應用 SPOT 衛星資料求取大氣氣溶膠光學厚度. 航測及遙測學刊, 3(4), 1-14.
47. 林唐煌, 劉振榮, & 陳哲俊. (2001). 利用衛星資料求取大氣氣溶膠光學厚度之研究及其在大氣環境檢測之應用. 航測及遙測學刊, 6(4), 1-26.
48. 林唐煌,(2001)。利用衛星資料求取大氣氣溶膠光學厚度之研究與應用。國立中央大學太空科學研究所博士論文,中壢。
49. 許俊傑,(2016)。Landdat-7衛星資料反演都市大氣氣膠光學厚度之研究與應用。國立中央大學遙測科技碩士學位學程碩士論文,中壢。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top