1. Bessho, K., HAYASHI, M., IKEDA, A., INOUE, H., KUMAGAI, Y., MIYAKAWA, T., ... & SASAKI, Y. (2016). An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183.
2. Borde, R., Ramon, D., Schmechtig, C., & Santer, R. (2003). Extension of the DDV concept to retrieve aerosol properties over land from the Modular Optoelectronic Scanner (MOS) sensor. International Journal of Remote Sensing, 24(7), 1439-1467.
3. Deschamps, P. Y., Duhaut, P., Rouquet, M. C., & Tanre, D. (1984). Demonstration, analysis, and correction of atmospheric effects on Landsat or SPOT multispectral data. Spectral signatures of objects in remote sensing, 709-722.
4. Grosso, N., & Paronis, D. (2012). Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements. Atmospheric Research, 116, 33-45.
5. Heidinger, A., Walther, A., Botambekov, D., Straka III, W., & Wanzong, S. (2014). The Clouds from AVHRR Extended User’s Guide Version, 5.4.1.
6. Herman, J. R., & Celarier, E. A. (1997). Earth surface reflectivity climatology at 340–380 nm from TOMS data. Journal of Geophysical Research: Atmospheres, 102(D23), 28003-28011.
7. Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., ... & Tsay, S. C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296-9315.
8. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569.
9. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180-3195.
10. Japan Meteorological Agency. (2015) Himawari-8/9 Himawari Standard Data User’s Guide version, 1.2.
11. JMA Geostationary Meteorological Satellite System for Himawari-8/9. (n.d.) Retrieved February 13, 2017, from http://www.jma-net.go.jp/msc/en/index.html
12. Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., ... & Levy, R. C. (2007). Satellite‐derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research: Atmospheres, 112(D18).
13. Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
14. Kleidman, R. G., A. Smirnov, R. C. Levy, S. Mattoo, and D. Tanré, 2012: Evaluation and wind speed dependence of MODIS aerosol retrievals over open ocean. IEEE Trans. Geosci. Remote Sens., 50, 429–435.
15. Knapp, K. R. (2002). Quantification of aerosol signal in GOES 8 visible imagery over the United States. Journal of Geophysical Research: Atmospheres, 107(D20).
16. Kokhanovsky, A. A. (2009). Satellite aerosol remote sensing over land. G. Leeuw (Ed.). Berlin: Springer.
17. Laszlo, I., Ciren, P., Liu, H., Kondragunta, S., Tarpley, J. D., & Goldberg, M. D. (2008). Remote sensing of aerosol and radiation from geostationary satellites. Advances in Space Research, 41(11), 1882-1893.
18. Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 10399–10420.
19. Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989.
20. Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13).
21. Liu, C. H., Chen, A. J., & Liu, G. R. (1996). An image-based retrieval algorithm of aerosol characteristics and surface reflectance for satellite images. International Journal of Remote Sensing, 17(17), 3477-3500.
22. Lyapustin, A., and Wang, Y. (2007). MAIAC-Multi-Angle Implementation of Atmospheric Correction for MODIS, pp. 69-100, In Satellite aerosol remote sensing over land.
23. NASA Goddard Space Flight Center Climate & Radiation Laboratory. (2014). MODIS Atmospheres webinar series #4: Collection 6 e-Deep Blue/Dark Target comparison and ‘merged’ aerosol products. Retrieved April 20, 2017, from https://modis-atmos.gsfc.nasa.gov/Webinar2014/MODIS_Collection6_week4_DTDBmerge.pdf
24. NASA Jet Propulsion Laboratory California institute of Technology. (2012). ASTER Global Digital Elevation Map Announcement. Retrieved April 20, 2017, from https://asterweb.jpl.nasa.gov/gdem.asp
25. NASA. (n.d.) About MODIS. Retrieved February 13, 2017, from https://modis.gsfc.nasa.gov/about/
26. NASA. Goddard Space Flight Center. AEROSOL ROBOTIC NETWORK. (2017) Retrieved February 13, 2017, from https://aeronet.gsfc.nasa.gov/new_web/index.html
27. NASA. LAADS DAAC. (n.d.) Retrieved February 13, 2017, from https://ladsweb.nascom.nasa.gov/search/index.html
28. NOAA-AWG Real-time Cloud Products and Images from CLAVR-x. (n.d.) Retrieved February 13, 2017, from http://cimss.ssec.wisc.edu/clavrx/google_earth_main.html
29. Pokrovsky, O., & Roujean, J. L. (2003). Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sensing of Environment, 84(1), 100-119.
30. Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., ... & Eck, T. F. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the atmospheric sciences, 62(4), 947-973.
31. Retalis, A., & Sifakis, N. (2010). Urban aerosol mapping over Athens using the differential textural analysis (DTA) algorithm on MERIS-ENVISAT data. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 17-25.
32. Sano, I., Mukai, S., Okada, Y., Holben, B. N., Ohta, S., & Takamura, T. (2003). Optical properties of aerosols during APEX and ACE‐Asia experiments. Journal of Geophysical Research: Atmospheres, 108(D23).
33. Sayer, A. M., Hsu, N. C., Bettenhausen, C., Lee, J., Redemann, J., Schmid, B., & Shinozuka, Y. (2016). Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. Journal of Geophysical Research: Atmospheres, 121(9), 4830-4854.
34. Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. J. (2014). MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24).
35. Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
36. Tanré, D., Bréon, F. M., Deuzé, J. L., Dubovik, O., Ducos, F., François, P., ... & Waquet, F. (2011). Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric Measurement Techniques, 4(7), 1383-1395.
37. Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964.
38. UESAWA Daisaku. (2016). Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. METEOROLOGICAL SATELLITE CENTER TECHNICAL NOTE, No.61.
39. Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3.
40. Wikipedia. Aqua(satellite). (n.d.) Retrieved April 19, 2017, from https://en.wikipedia.org/wiki/Aqua_(satellite)
41. Wikipedia. Terra(satellite). (n.d.) Retrieved April 19, 2017, from https://en.wikipedia.org/wiki/Terra_(satellite)
42. Wu, Y., de Graaf, M., & Menenti, M. (2016). Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction. Atmospheric Measurement Techniques, 9(11), 5575.
43. Yang, L., Xue, Y., Guang, J., Kazemian, H., Zhang, J., & Li, C. (2014). Improved Aerosol Optical Depth and Ångstrom Exponent Retrieval Over Land From MODIS Based on the Non-Lambertian Forward Model. IEEE Geoscience and Remote Sensing Letters, 11(9), 1629-1633.
44. 朱琳, 孙林, 杨磊, 徐菲菲, & 徐青山. (2016). 结构函数法反演气溶胶光学厚度中像元的间隔设置. 遥感学报, 20(4), 528-539.
45. 李宗庭,(2016)。對數常態分布在氣膠消光係數廓線擬合之應用。國立中央大學遙測科技碩士學位學程碩士論文,中壢。46. 林唐煌, 劉振榮, & 陳哲俊. (1998). 應用 SPOT 衛星資料求取大氣氣溶膠光學厚度. 航測及遙測學刊, 3(4), 1-14.47. 林唐煌, 劉振榮, & 陳哲俊. (2001). 利用衛星資料求取大氣氣溶膠光學厚度之研究及其在大氣環境檢測之應用. 航測及遙測學刊, 6(4), 1-26.48. 林唐煌,(2001)。利用衛星資料求取大氣氣溶膠光學厚度之研究與應用。國立中央大學太空科學研究所博士論文,中壢。49. 許俊傑,(2016)。Landdat-7衛星資料反演都市大氣氣膠光學厚度之研究與應用。國立中央大學遙測科技碩士學位學程碩士論文,中壢。