跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董欣其
研究生(外文):Hsin-Chi Tung
論文名稱(外文):Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
指導教授:薛雅薇
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生物物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:45
中文關鍵詞:核磁共振生物膜豆固醇
外文關鍵詞:NMRPOPEStigmasterol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固醇在生物膜的組成與功能中扮演了重要的角色。在含有膽固醇的人造細胞膜研究中發現,當脂質膜中加入膽固醇後會形成sterol-rich以及sterol-poor的區塊。一般認為這些處於liquid-ordered態的sterol-rich區塊即為細胞膜上的脂筏。另一方面,在某些含其他種類固醇的人造細胞膜研究中並未觀察到liquid-ordered這種相態。而在本論文中,我們研究豆固醇對於POPE-d31膜在物理性質方面的影響。
本研究使用氘核磁共振(2H NMR)來量測由POPE-d31和豆固醇所組成之model membranes。將不同濃度(最高50 mol %)的豆固醇樣品在不同溫度下量測以取得核磁共振光譜。結果顯示豆固醇會降低膠態POPE-d31脂雙層膜的有序程度,而這個影響十分有限。不過另一方面,在液晶態的POPE-d31膜中,豆固醇反而增加了膜上脂質分子碳鏈的有序程度。我們從實驗結果得出了溫度對豆固醇濃度的POPE-d31脂質膜相圖。豆固醇對於膠態相變到液晶態的相變溫度影響不大,不過明顯降低了液晶態相變到inverted hexagonal態的相變溫度。此外,在POPE-d31與豆固醇組成的膜中並未觀察到liquid-ordered相態。比較豆固醇以及其他固醇對於POPE-d31之影響的結果顯示,存在於固醇疏水端碳鏈上的雙鍵或支鏈會減少固醇增加POPE-d31碳鏈之有序程度的能力。
Sterols play important roles in membrane organization and functions. Model membranes containing cholesterol reveal that the addition of cholesterol in lipid membranes results in sterol-poor and sterol-rich domains. The sterol-rich domain, in the liquid-ordered phase, is thought to be the lipid raft found in cell membranes. On the other hand, in some model membranes liquid-ordered phase is not observed. In this work, we investigate the effect of stigmasterol on the physical properties 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE-d31) membranes.
Model membranes composed of POPE-d31 and stigmasterol were studied using deuterium nuclear magnetic resonance. NMR spectra were taken as a function of temperature and stigmasterol concentration up to 50 mol %. Stigmasterol decreases membrane order of the gel-phase POPE-d31 bilayers and this effect is very limited. In contrast, stigmasterol increases the chain order of the liquid-crystalline (lc) phase POPE-d31 bilayers slightly. The temperature-composition phase diagram is presented. The addition of stigmasterol does not affect the gel-to-lc phase transition significantly, however it decreases the temperature of lc-to-HII phase transition strongly. In addition, there is no liquid-ordered phase observed in POPE-d31/stigmasterol membranes. A comparison between stigmasterol and other sterols suggest that the extra double bond and the extra methyl group in the acyl chain of sterol hinder the ability of sterol to increase POPE-d31 chain order.
摘要....................................................i
Abstract...............................................ii
致謝..................................................iii
Contents...............................................iv
List of Figures........................................vi
Chapter 1 Introduction.................................1
1.1 Structure of Cell Membrane.........................1
1.2  Phase Behavior....................................2
1.3 Model Membranes Containing POPE and Sterol.........3
1.4 The Structures of POPE and Sterol..................5
1.5 Inverted Hexagonal Phase...........................7
Chapter 2 Materials and Methods........................8
2.1 2H Nuclear Magnetic Resonance Spectroscopy.........8
2.1.1 The Principle of 2H NMR..........................8
2.1.2  Powder Spectrum.................................9
2.1.3 Characteristic Spectrum.........................11
2.2 Materials.........................................13
2.2.1 Sample Preparation..............................13
2.2.2 2H NMR Measurement..............................13
2.2.3 First Moment....................................14
2.2.4 dePaked Spectra.................................15
Chapter 3 Results and Discussion......................17
3.1 POPE-d31/stigmasterol Membranes...................17
3.2 The Temperature-Composition Phase Diagram.........27
Chapter 4 Conclusion..................................29
References.............................................34
[1] L. J. Pike. The Challenge of Lipid Rafts. Journal of Lipid Research 50 (2009) S323-S328.
[2] S. J. Singer and G. L. Nicolson. 1972. The Fluid Mosaic Model of the Structure of the Cell Membranes. Science 175:720-731.
[3] Kai Simons and Elina Ikonen. 1997. Functional Rafts in Cell Membranes. Nature 387: 569-572.
[4] Kai Simons and Julio L. Sampaio. 2011. Membrane Organization and Lipid Rafts. Cold Spring Harb Perspect Biol 3:a004697
[5] D. A. Brown and E. London. 1998. Functions of Lipid Rafts in Biological Membranes. Annu. Rev. Cell Dev. Biol. 14, 111-36.
[6] K. Simons and E. Ikonen. 2000. How Cell Handle Cholesterol. Science 290:1721-1726.
[7] John F. Nagle, Stephanie Tristram-Nagle. 2000. Structure of Lipid Bilayers. Biochim. Biophys. Acta. 1469: 159-195.
[8] J. Rubenstein, B. A. Smith, and H. M. McConnell. 1979. Lateral diffusion in Binary Mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. 76: 15-18.
[9] Sean Munro. 2003. Lipid Rafts: Elusive or Illusive? Cell 115: 377-388.
[10] C. Tanford. 1980. The Hydrophobic Effect, 2nd ed., Wiley, New York.
[11] Emil Endress, Sybille Bayerl, Katrin Prechtel, Christian Maier, Rudolf Merkel, and Thomas M. Bayerl. 2002. The Effect of Cholesterol, Lanosterol, and Ergosterol on Lecithin Bilayer Mechanical Properties at Molecular and Microscopic Dimensions: A Solid-State NMR and Micropipet Study. Langmuir 18: 3293-3299
[12] X. Xu, and E. London. 2000. The Effect of Sterol Structure on Membrane Lipid Domains Reveals How Cholesterol Can Induce Lipid Domain Formation. Biochemistry 39:843-849.
[13] Chantal Pare´ and Michel Lafleur. 1998. Polymorphism of POPE/Cholesterol System: A 2H Nuclear Magnetic Resonance and Infrared Spectroscopic Investigation. Biophysical Journal 74:899-909.
[14] Ya-Wei Hsueh, Chi-Jung Weng, Mei-Ting Chen, Jenifer Thewalt, and Martin Zuckermann. 2010. Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes. Biophysical Journal 98:1209-1217.
[15] Philip L. Ywagle. The Structure of Biological Membranes, 2nd ed., CRC PRESS.
[16] C. Santivarangkna, U. Kulozik and P. Foerst. 2008. Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology 105:1-13.
[17] Ya-Wei Hsueh, Ralph Giles, Neil Kitson, and Jenifer Thewalt. 2002. The Effect of Ceramide on Phosphatidylcholine Membranes: A Deuterium NMR Study. Biophys. J. 82:3089-3095.
[18] Davis, J. H., and K. R. Jeffrey. 1977. The temperature dependence of chain order in potassium palmitate-water. A deuterium NMR study. Chem. Phys. Lipids. 20:87-104.
[19] Davis, J. H., K. R. Jeffrey, …, T. P. Higgs. 1976. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42:390-394.
[20] Lafleur, M., Fine, B., Sternin, E., Cullis, P. R., and Bloom, M. 1989. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys. J. 56:1037-1041.
[21] Lafleur, M., P. R. Cullis, …, M. Bloom. 1990. Comparison of the orientational order of lipid chains in the Lα and HII phases. Biochemistry. 29:8325–8333.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top