|
[1] Adamczyk, M., Genzel, L., Dresler, M., Steiger, A., and Friess, E. (2015). Automatic sleep spindle detection and genetic influence estimation using continuous wavelet transform. Front. Hum. Neurosci. 9:624. doi: 10.3389/fnhum.2015.00624 [2] Bergmann, T. O., Mölle, M., Diedrichs, J., Born, J., and Siebner, H. R. (2012). Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage, 59(3), 2733-2742. doi: 10.1016/j.neuroimage.2011.10.036 [3] Bódizs, R., Kis, T., Lázár, A. S., Havran, L., Rigó, P., Clemens, Z., et al. (2005). Prediction of general mental ability based on neural oscillation measures of sleep. J. Sleep Res. 14(3), 285-92. doi: 10.1111/j.1365-2869.2005.00472.x [4] Bódizs, R., Körmendi, J., Rigó, P. & Lázár, A.S. (2009). The individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigm. J. Neurosci. Methods. 178(1), 205-213. doi: 10.1016/j.jneumeth.2008.11.006 [5] Brun, M., Xu, Q., and Dougherty, E. R. (2008). Which is better: holdout or full-sample classifier design? EURASIP Journal on Bioinformatics and Systems Biology 8:297945. doi: 10.1155/2008/297945 [6] Causa, L., Held, C. M., Causa, J., Estévez, P. A., Perez, C. A., Chamorro, R., et al. (2010). Automated sleep-spindle detection in healthy children Polysomnograms. IEEE Trans. Biomed. Eng. 57(9), 2135-2146. doi: 10.1109/TBME.2010.2052924 [7] Crowley, K., Trinder, J., Kim, Y., Carrington, M., and Colrain, I. M. (2002). The effects of normal aging on sleep spindle and K-complex production. Clin. Neurophysiol. 113, 1615-1622. doi: 10.1016/S1388-2457(02)00237-7 [8] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182-197. doi: 10.1109/4235.996017 [9] Deb, K., Mohan, M., and Mishra, S. (2005). Evaluation the epsilon-domination based multi objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 13(4), 501-525. doi: 10.1162/106365605774666895 [10] Devuyst, S., Dutoit, T., Stenuit, P., and Kerkhofs M. (2011). “Automatic sleep spindles detection-overview and development of a standard proposal assessment method,” in Proceedings of the annual International Conference of the IEEE Engineering in Medicine and Biology Society (Boston,MA), 1713-1716. [11] Devuyst, S. (2013). The DREAMS Sleep Spindles Database. Available online at: http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/ [12] Doncieux, S., Mouret, J.-B., and Bredeche, N. (eds.) (2011). New Horizons in Evolutionary Robotics. Springer, Berlin-Heidelberg. doi: 10.1007/978-3-642-18273-3 [13] Edelsbrunner, H., Kirkpatrick, D. G. and Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Trans. Inf. Theory, IT-29(4): 551–559. [14] Edelsbrunner, H. and M¨ucke, E. P. (1994). Three-dimensional alpha shapes, ACM Trans. Graph., 13(1): 43–72. [15] Eschenko, O., Mölle, M., Born, J., and Sara, S. J. (2006). Elevated sleep spindle density after learning of after retrieval in rats. J. Neurosci. 26(50), 12914-20. doi:10.1523/JNEUROSCI.3175-06.2006 [16] Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., Murphy, M., Riedner B. A., et al. (2007). Reduced sleep spindle activity in schizophrenia patients. Am. J. Psychiatry.164(3), 483-492. doi: 10.1176/ajp.2007.164.3.483 [17] Fogel, S. M., Nader, R., Cote, K. A., and Smith, C. T. (2007). Sleep spindles and learning potential. Behav. Neurosci. 121, 1-10. doi: 10.1037/0735-7044.121.1.1 [18] Geiger, A., Huber, R., Kurth, S., Ringli, M., Jenni, O. G., and Achermann, P. (2011). The sleep EEG as a marker of intellectual ability in school age children. Sleep 34(2), 181-189. [19] Goutte, C., and Gaussier, E. (2005). “A probabilistic interpretation of precision, recall and F-score, with implication for evaluation,” in Proceedings of 27th European conference on IR research (ECIR 2005), 345–359. [20] Gruber, R., Wise, M. S., Frenette, S., Knäauper, B., Boom, A., Fontil, L., et al. (2013). The association between sleep spindles and IQ in healthy school-age children. Int. J. Psychophysiol. 89, 229-40. doi: 10.1016/j.ijpsycho.2013.03.018 [21] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. 454A, 903-995. doi: 10.1098/rspa.1998.0193 [22] Huang, N. E., Wu, Z., Long, S. R., Arnold, K. C., Chen, X., and Blank, K. (2009). On instantaneous frequency. Advances in Adaptive Data Analysis 1(2), 177-229. doi: 10.1142/S1793536909000096 [23] Huang, A., Li, J., Summers, R. M., Petrick, N., and Hara, A. K. (2010). Improving polyp detection algorithms for CT colonography: pareto front approach. Pattern Recognition Letters 31(11), 1461-1469. doi: 10.1016/j.patrec.2010.03.013 [24] Huang, A., Liu, M. Y., and Yu, T. W. (2015). Bandpass empirical mode decomposition using a rolling ball algorithm. Advances in Adaptive Data Analysis 7(1):1550003. doi: 10.1142/S179353691550003X [25] Huang, A., Lee, C.-W., and Liu, H.-M. (2016). Rolling ball sifting algorithm for the augmented visual inspection of carotid bruit auscultation. Sci. Rep. 6:30179. doi: 10.1038/srep30179 [26] Huupponen, E., Gómez-Herrero, G., Saastamoinen, A., Värri, A., Hasan, J., and Himanen S. L. (2007). Development and comparison of four sleep spindle detection methods. Artificial Intelligence in Medicine 40(3), 157-170. doi: 10.1016/j.artmed.2007.04.003 [27] Iber, C., Ancoli-Israel, S., Chesson, A. L., and Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications. Westchester, IL: American Academy of Sleep Medicine. [28] Knowles, J.D., and Corne, D.W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8(2), 149-172. doi: 10.1162/106365600568167 [29] Lajnef, T., Chaibi, S., Eichenlaub, J.-B., Ruby, P. M., Aguera, P.-E., Samet, M., et al. (2015). Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front. Hum. Neurosci. 9:414. doi: 10.3389/fnhum.2015.00414 [30] Latreille, V., Carrier, J., Lafortune, M., Postuma, R. B., Bertrand, J. A., Panisset, M., et al. (2015). Sleep spindles in Parkinson's disease may predict the development of dementia. Neurobiology of Aging 36(2),1083-90. doi: 10.1016/j.neurobiolaging.2014.09.009 [31] Martin, N., Lafortune, M., Godbout, J., Barakat, M., Robillard, R., Poirier, G., et al. (2013). Topography of age-related changes in sleep spindles. Neurobiology of Aging 34(2), 468-476. doi: 10.1016/j.neurobiolaging.2012.05.020 [32] Messac, A., Ismail-Yahaya, A., and Mattson, C. A. (2003). The Normalized Normal Constraint Method for Generating the Pareto Frontier. Structural and Multidisciplinary Optimization 25(2), 86-98. doi: 10.1007/s00158-002-0276-1 [33] Mölle, M., Marshall, L., Gais, S., and Born, J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J. Neurosci. 22, 10941-10947 [34] O’Reilly, C. (2013). Spyndle. Available online at: https://bitbucket.org/christian_oreilly/spyndle [35] O’Reilly, C., Gosselin, N., Carrier, J., and Nielsen, T. (2014). Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. J. Sleep Res. 23, 628-635. doi: 10.1111/jsr.12169 [36] O’Reilly, C., and Nielsen, T. (2015). Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools. Front. Hum. Neurosci. 9:353. doi: 10.3389/fnhum.2015.00353 [37] Popov, A. (2005). SPEA2 for Matlab. Available online at: http://p0p0v.com/science/downloads/MOEA_SPEA2.zip [38] Schabus, M., Hoedlmoser, K., Pecherstorfer, T., Anderer, P., Gruber, G., Parapatics, S., et al. (2008). Interindividual sleep spindle differences and their relation to learning-related enhancements. Brain Res.1191,127-35. doi: 10.1016/j.brainres.2007.10.106 [39] Schimicek, P., Zeitlhofer, J., Anderer, P., and Saletu, B. (1994). Automatic sleep-spindle detection procedure: aspects of reliability and validity. Clin. Electroencephalogr. 25, 26-29. doi: 10.1177/15500594902500108 [40] Sitnikova, E., Hramov, A. E., Koronovsky, A. A., and van Luijtelaar, G. (2009). Sleep spindles and spike-wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180(2), 304-316. doi: 10.1016/j.jneumeth.2009.04.006 [41] Tamminen, J., Payne, J. D. , Stickgold, R., Wamsley, E. J., and Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. J. Neurosci. 30, 14356–14360. doi: 10.1523/JNEUROSCI.3028-10.2010 [42] Tsanas, A., and Clifford, G. D. (2015). Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing. Front. Hum. Neurosci. 9:181. doi: 10.3389/fnhum.2015.00181 [43] Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154-161. doi: 10.1016/j.biopsych.2011.08.008 [44] Wang, Y.-H., Yeh, C.-H., Young, H.-W., Hu, K., and Lo, M.-T. (2014). On the computational complexity of the empirical mode decomposition algorithm. Phys. A, Stat. Mech. Appl. 400, 159-167. doi: 10.1016/j.physa.2014.01.020 [45] Warby, S. C., Wendt, S. L, Welinder, P., Munk, E. G., Carrillo, O., Sorensen, H. B., et al. (2014). Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nature methods11(4), 385-392. doi:10.1038/nmeth.2855 [46] Wendt, S. L., Christensen, J. A., Kempfner, J., Leonthin, H. L., Jennum, P., and Sorensen, B. D. (2012). “Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects,” in Proceedings of the annual International Conference of the IEEE Engineering in Medicine and Biology Society (San Diego, CA), 4250-4253. [47] Zitzler, E., Laumanns, M., and Thiele, L. (2001a) SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103. [48] Zitzler, E. Laumanns, M., and Thiele, L. (2001b). “SPEA2: improving the strength Pareto evolutionary algorithm,” in Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), 95-100.
|