跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉思蔓
研究生(外文):Szu-Mam Liu
論文名稱:研究黑色素瘤細胞中 miR-524-5p 及 miR-596 的機制及功能
論文名稱(外文):Study of the mechanisms and functions of miR-524-5p and miR-596 in melanoma cells
指導教授:馬念涵
指導教授(外文):Nianhan Ma
學位類別:博士
校院名稱:國立中央大學
系所名稱:生醫科學與工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:214
中文關鍵詞:微型核糖核酸黑色素瘤
外文關鍵詞:MicroRNAMelanoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
大約三分之一的癌症包含黑色素瘤,其細胞素激活的蛋白激酶
(MAPK/ERK, Mitogen-Activated Protein Kinases/ Extracellular signal-Regulated Kinase) 信號傳導途徑失去調控。微型核糖核酸 (MicroRNAs, micro ribonucleic acid) 為內源性產物,並且可以抑制特定致癌信號傳導途徑中多個目標蛋白。因此已經成為應用於癌症治療中具有吸引力的策略。先前實驗室的微型核糖核酸微陣列 (microarray) 研究,在黑色素瘤細胞中找出了22個與MAPK/ERK信號傳導途徑有關的microRNA。然而,這些MAPK/ERK信號傳導途徑有關的microRNA,在黑色素瘤細胞中的抑制癌症活性致病特性及如何參與在致癌信號傳導途徑仍不明確。
  22個與MAPK/ERK信號傳導途徑有關的microRNA中,我們利用GEO (Gene Expression Omnibus) database的分析近一步篩選出9個與黑色素瘤檢體有相關的microRNA。最後的實驗數據發現,除了miR-192-3p及miR-592以外,其他的候選microRNA對黑色素瘤細胞的生長與移動有不同程度的影響。
更深入的研究,我們探討了miR-524-5p和miR-596在黑色素瘤的機制。發現miR-524-5p藉由抑制BRAF和ERK2的表現量調為控MAPK信號傳導的活性。由於BRAF和ERK2是MAPK信號傳導途徑中主要的蛋白質,因此miR-524-5p的過度表現,可以有效抑制MAPK/ERK信號傳導途徑、腫瘤增殖和黑素瘤細胞遷移。
miR-596是另一個有潛力的microRNA,其表現量在黑色素瘤中比痣低。此外,miR-596的過度表現可有效抑制MAPK/ERK信號傳導途徑、黑色素瘤細胞增殖、遷移和侵襲、並增加細胞凋亡。新的發現指出,miR-596不僅透過MEK1三端非翻譯區 (3’UTR, untranslated region) 來抑制MAPK/ERK信號傳導途徑,還可以透過MCL1和BCL2L1三端非翻譯區來增加細胞凋亡。這是第一個發現到miR-596是一個重要的抑癌microRNA,可以同時調節黑色素瘤的存活和死亡。
在應用方面,microRNA combination是一個新的基因治療方式,希望透過抑制致癌途徑中更多的目標,以克服原有無法達成的挑戰。恰巧此議題在黑素瘤細胞中鮮少被研究。我們的初步數據指出,由miR-524-5及miR-596兩種microRNAs組成的microRNA combination在黑素瘤細胞中未顯示有協同效應但有些微的加成效應。
在本研究結果中,闡述了microRNA在MAPK信號傳導途徑中扮演著重要的角色。
MAPK/ERK pathway is deregulated in one-third of all human cancers, including melanoma. MicroRNAs have become an attractive strategy to apply in cancer therapy because that they are endogenous products and can repress several targets in a specific oncogenic signaling pathway. Previous results from microRNA microarray identified 22 candidate MAPK-related microRNAs in melanoma cells. However, the possible tumor-suppressive activities and clinic pathological characteristics of candidate microRNAs in melanoma had poorly evaluated and how microRNAs involved in the oncogenic signaling pathway remains unclear.
Among 22 candidates, we narrowed down nine microRNAs (miR-192-3p, miR-218-2-3p, miR-518d-5p, miR-518f-5p, miR-520e, miR-524-5p, miR-567, miR-592 and miR-596) are linked to melanoma by GEO database analysis. We further found that all of them can control the melanoma cell growth and migration with different efficiency except miR-218-2-3p and miR-592.
In further investigation, we delved into the mechanism of miR-524-5p and miR-596. miR-524-5p represses in MAPK signaling pathway through regulating the levels of BRAF and ERK2. Since BRAF and ERK2 are the main components of MAPK signaling, the overexpression of miR-524-5p effectively inhibits MAPK/ERK signaling, tumor proliferation, and melanoma cell migration.
Another potential microRNA, expression of miR-596, is lower in melanoma than in nevi tissues. In addition, miR-596 overexpression effectively inhibits MAPK/ERK signaling, melanoma cell proliferation, migration, and invasion as well as increases cell apoptosis in vitro. Our novel findings showed that miR-596 not only negatively regulates the MAPK/ERK signaling pathway via the MEK1 3’ untranslated region (UTR) but also increases apoptosis via the MCL1 and BCL2L1 3’UTRs. This is the first finding illustrating that miR-596 is an important tumor-suppressive microRNA that can regulate both the survival and death of melanoma.
In microRNA application, combinatorial microRNA therapeutics is a new frontier in gene therapy that has the ability to overcome the challenges by targeting multiple components of key oncogenic pathways. The issue of microRNA combination was rarely investigated in melanoma cells. In our preliminary data indicate that combination of miR-524-5p and miR-596 did not show a synergistic but lightly additive effect in melanoma cells.
These results from my research studies should provide a research resource to further elucidate the regulatory roles of microRNAs in MAPK signaling pathway.
Table of contents

中文摘要 i
Abstract iii
Acknowledgement v
List of tables xi
List of Abbreviations xii
Chapter 1: Literature review 1
1.1 Introduction to cancer 1
1.1.1 Definition of cancer 1
1.1.2 Prevalence and incidence of cancer 2
1.2 Introduction to melanoma 2
1.2.1 Genetic background in melanoma 4
1.2.2 Dysregulated pathways in melanoma 4
1.2.3 Melanoma therapy 10
1.2.4 Drug resistant in Melanoma 11
1.3 The mechanism and application of microRNA 11
1.3.1 Biogenesis and mechanism of microRNA 11
1.3.2 microRNA dysregulation in disease 12
1.3.3 microRNA application in disease 13
1.4 Significances and purpose 14
Chapter 2: Materials and Methods 28
2.1 Cell lines and reagents 28
2.2 GEO data analysis 28
2.3 Oligonucleotides and plasmids 29
2.4 Tissue specimens 31
2.5 In situ hybridization (ISH) 31
2.6 Transfection 32
2.7 RT-qPCR 32
2.8 microRNA array card 32
2.9 Luciferase reporter gene assay 33
2.10 Immunoblotting 34
2.11 Alamar blue assay 34
2.12 Soft agar assay 35
2.13 Colony formation assay 35
2.14 Annexin V assay 35
2.15 Caspase3/7 activity assay 35
2.16 Migration assay 36
2.17 Wound healing assay 36
2.18 xCELLigence Real-Time Cell Analysis (RTCA): migration and invasion 37
2.19 Xenograft 37
2.20 Statistical analysis 38
Chapter 3: Identify MAPK-related microRNAs in melanoma cells 39
3.1 Introduction 39
3.2 Results 40
3.2.1 Screen microRNAs which is related to MAPK signaling pathway by GEO data 40
3.2.2 Overexpression of MAPK-related microRNAs reduce MAPK/ERK signaling pathway activity 40
3.2.3 MAPK-related microRNAs decrease cancer cell proliferation 41
3.2.4 MAPK-related microRNAs induce cell apoptosis 42
3.3 Discussion 43
Chapter 4: miR-524-5p represses MAPK signaling pathway through regulating the level of BRAF and ERK2 in melanoma 53
4.1 Introduction 53
4.2 Results 54
4.2.1 The expression level of miR-524-5p is decreased in melanoma cells with highly MAPK signaling 54
4.2.2 The level of miR-524-5p is associated with MAPK/ERK pathway 55
4.2.3 BRAF and ERK2 is a directly targets of miR-524-5p 56
4.2.4 miR-524-5p modulates the activity of MAPK/ERK pathway, cell cycle and apoptosis proteins 57
4.2.5 miR-524-5p represses cell proliferation, growth and migration 58
4.2.6 miR-524-5p slows the progression of melanoma in mice 59
4.3 Discussion 60
Chapter 5: miR-596 decrease MAPK signaling pathway by regulating MEK1 and enhance apoptosis pathway through targeting MCL1 and BCL2L1 in melanoma 79
5.1 Introduction 79
5.1.1 Copy number alteration 79
5.1.2 Apoptosis dysregulation in cancer 79
5.2 Results 80
5.2.1 miR-596 levels are repressed in melanoma cells with elevated MAPK/ERK activity 80
5.2.2 miR-596 decreases cell proliferation and growth in melanoma cells 82
5.2.3 miR-596 enhances apoptosis ability in melanoma cells 83
5.2.4 miR-596 inhibits cell migration and invasion in melanoma cells 83
5.2.5 miR-596 attenuates the activity of the MAPK/ERK and anti-apoptosis pathways 84
5.2.6 miR-596 mediates cell survival by directly inhibiting MEK1, MCL1, and BCL2L1 expression through their 3’UTRs 85
5.3 Discussion 86
Chapter 6: The effect of microRNA combination in melanoma cells 104
6.1 Introduction 104
6.2 Results 105
6.2.1 Screen the effective microRNA combination in melanoma cells 105
6.2.2 The effect of proliferation in melanoma cells treated with microRNA combination 106
6.2.3 The effect on apoptotic pathway in melanoma cells treated with microRNA combination 107
6.3 Discussion 107
Chapter 7: Concluding remarks and future direction 116
7.1 Conclusion remarks 116
7.2 Future direction 118
References 121
Appendix A. List of primers described in this thesis. 134
Appendix B. List of plasmids described in this thesis. 136
Appendix C. Tumor samples used in GISTIC analysis from TCGA . 154
Appendix D. 367 melanoma samples used in GISTIC analysis: 20 significant focal amplifications were found. 155
Appendix E. 367 melanoma samples used in GISTIC analysis: 34 significant focal deletions were found. 156
Appendix F. Publication list. 157
1. Tabassum, D.P. and K. Polyak, "Tumorigenesis: it takes a village". Nat Rev Cancer, 15(8): p. 473-83. 2015.
2. Pandey, M.K., S. Prasad, A.K. Tyagi, L. Deb, J. Huang, D.N. Karelia, S.G. Amin, and B.B. Aggarwal, "Targeting Cell Survival Proteins for Cancer Cell Death". Pharmaceuticals, 9(1). 2016.
3. Maddika, S., S.R. Ande, S. Panigrahi, T. Paranjothy, K. Weglarczyk, A. Zuse, M. Eshraghi, K.D. Manda, E. Wiechec, and M. Los, "Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy". Drug Resist Updat, 10(1-2): p. 13-29. 2007.
4. Luo, J., N.L. Solimini, and S.J. Elledge, "Principles of cancer therapy: oncogene and non-oncogene addiction". Cell, 136(5): p. 823-37. 2009.
5. Mbeunkui, F. and D.J. Johann, Jr., "Cancer and the tumor microenvironment: a review of an essential relationship". Cancer Chemother Pharmacol, 63(4): p. 571-82. 2009.
6. Mehlen, P. and A. Puisieux, "Metastasis: a question of life or death". Nat Rev Cancer, 6(6): p. 449-58. 2006.
7. Quail, D.F. and J.A. Joyce, "Microenvironmental regulation of tumor progression and metastasis". Nat Med, 19(11): p. 1423-37. 2013.
8. Blair, G.E. and G.P. Cook, "Cancer and the immune system: an overview". Oncogene, 27(45): p. 5868. 2008.
9. Edna Maria Vissoci Reiche, S.O.V.N., and Kaminami Morimoto, "Stree, depression, the immuno system, and cancer". The Lancet Oncology, 5: p. 617-625. 2004.
10. Bild, A.H., G. Yao, J.T. Chang, Q. Wang, A. Potti, D. Chasse, M.B. Joshi, D. Harpole, J.M. Lancaster, A. Berchuck, J.A. Olson, Jr., J.R. Marks, H.K. Dressman, M. West, and J.R. Nevins, "Oncogenic pathway signatures in human cancers as a guide to targeted therapies". Nature, 439(7074): p. 353-7. 2006.
11. Croce, C.M., "Oncogenes and cancer". The New England Journal of Medicine, 358: p. 502-511. 2008.
12. Shortt, J. and R.W. Johnstone, "Oncogenes in cell survival and cell death". Cold Spring Harb Perspect Biol, 4(12): p. a009829. 2012.
13. Chiang, C.J., S.L. You, C.J. Chen, Y.W. Yang, W.C. Lo, and M.S. Lai, "Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review". Jpn J Clin Oncol, 45(3): p. 291-6. 2015.
14. Nickoloff, B.J., J.Z. Qin, V. Chaturvedi, P. Bacon, J. Panella, and M.F. Denning, "Life and death signaling pathways contributing to skin cancer". J Investig Dermatol Symp Proc, 7(1): p. 27-35. 2002.
15. Lippens, S., E. Hoste, P. Vandenabeele, P. Agostinis, and W. Declercq, "Cell death in the skin". Apoptosis, 14(4): p. 549-69. 2009.
16. Lu, L.Y., N. Ou, and Q.B. Lu, "Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells". Sci Rep, 3: p. 3169. 2013.
17. Bastian, B.C., "The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia". Annu Rev Pathol, 9: p. 239-71. 2014.
18. Franjo Gruber, M.K., Ines Brajac, Marina Saftic, Vesna Peharda, Leo Cabrijan, Zrinka Stanic Zgombic, and Edita Simonic, "Molecular and genetic mechanism in melanoma". Collegium Antropologicum, 32: p. 147-152. 2008.
19. Sulaimon S.S. and a.K. B.E., "The basic biology of malignant melanoma: Molecular mechanism of disease profression and comparative aspects". J Vet Intern Med, 17: p. 760-772. 2003.
20. Inamdar, G.S., S.V. Madhunapantula, and G.P. Robertson, "Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail". Biochem Pharmacol, 80(5): p. 624-37. 2010.
21. Dhillon, A.S., S. Hagan, O. Rath, and W. Kolch, "MAP kinase signalling pathways in cancer". Oncogene, 26(22): p. 3279-90. 2007.
22. Kim, E.K. and E.J. Choi, "Pathological roles of MAPK signaling pathways in human diseases". Biochim Biophys Acta, 1802(4): p. 396-405. 2010.
23. Machnicki, M.M. and T. Stoklosa, "BRAF-a new player in hematological neoplasms". Blood Cells Mol Dis, 53(1-2): p. 77-83. 2014.
24. Helen Davies, G.R.B., Charles Cox, Philip Stephens, Sarah Edkins, Sheila Clegg, Jon Teague, Hayley Woffendin, Mathew J. Garnett, William Bottomley, Neil Davis, Ed Dicks, Rebecca Ewing, Yvonne Floyd, Kristian Gray, Sarah Hall, Rachel Hawes, Jaime Hughes, Vivian Kosmidou, Andrew Menzies, Catherine Mould, Adrian Parker, Claire Stevens, Stephen Watt, Steven Hooper, Rebecca Wilson, Hiran Jayatilake, Barry A. Gusterson, Colin Cooper, Janet Shipley, Darren Hargrave, Katherine Pritchard-Jones, Norman Maitland, Georgia Chenevix-Trench, Gregory J. Riggins, Darell D. Bigner, Giuseppe Palmieri, Antonio Cossu, Adrienne Flanagan, Andrew Nicholson, Judy W. C. Ho, Suet Y. Leung, Siu T. Yuen, Barbara L. Weber, Hilliard F. Seigler, Timothy L. Darrow18, Hugh Paterson, Richard Marais, Christopher J. Marshall, Richard Wooster, Michael R. Stratton, & P. Andrew Futreal, "Mutations of the BRAF gene in human cancer". Nature, 417: p. 949-954. 2002.
25. Fecher, L.A., R.K. Amaravadi, L.M. Schuchter, and K.T. Flaherty, "Drug targeting of oncogenic pathways in melanoma". Hematol Oncol Clin North Am, 23(3): p. 599-618. 2009.
26. Downward, J., "Targeting RAS signalling pathways in cancer therapy". Nat Rev Cancer, 3(1): p. 11-22. 2003.
27. Mor, A. and M.R. Philips, "Compartmentalized Ras/MAPK signaling". Annu Rev Immunol, 24: p. 771-800. 2006.
28. Philips, M.R., "Compartmentalized singaling of Ras". Biochemical Society Transaction, 33: p. 657-661. 2005.
29. Wellbrock, C., M. Karasarides, and R. Marais, "The RAF proteins take centre stage". Nat Rev Mol Cell Biol, 5(11): p. 875-85. 2004.
30. Amardeep S.Dhillon, S.M., Zihni Yazici, Manfred Eulitz andWalter Kolch, "Regulation of Raf-1 activation and signallingby dephosphorylation". The EMBO Journal, 21: p. 64-71. 2002.
31. Maurer, G., B. Tarkowski, and M. Baccarini, "Raf kinases in cancer-roles and therapeutic opportunities". Oncogene, 30(32): p. 3477-88. 2011.
32. Khazak, V., I. Astsaturov, I.G. Serebriiskii, and E.A. Golemis, "Selective Raf inhibition in cancer therapy". Expert Opin Ther Targets, 11(12): p. 1587-609. 2007.
33. Fremin, C. and S. Meloche, "From basic research to clinical development of MEK1/2 inhibitors for cancer therapy". J Hematol Oncol, 3: p. 8. 2010.
34. Zhou, L., X. Tan, H. Kamohara, W. Wang, B. Wang, J. Liu, H. Egami, H. Baba, and X. Dai, "MEK1 and MEK2 isoforms regulate distinct functions in pancreatic cancer cells". Oncology Reports, 24(1): p. 251-5. 2010.
35. Sasaki, H., Y. Hikosaka, O. Kawano, S. Moriyama, M. Yano, and Y. Fujii, "MEK1 and AKT2 Mutations in Japanese Lung Cancer". Journal of Thoracic Oncology, 5(5): p. 597-600. 2010.
36. Aoidi, R., A. Maltais, and J. Charron, "Functional redundancy of kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect". Science signaling, 9(412): p. 53. 2016.
37. Kasobhatla, S. and B. Tseng, "Why target apoptosis in cancer treatment". Molecular Cancer Therapeutics, 2: p. 573-80. 2003.
38. Yoon, S. and R. Seger, "The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions". Growth Factors, 24(1): p. 21-44. 2006.
39. Keyse, S.M., "Protein phosphatases and the regulation of mitogen-activated protein kinase signalling". Current Opinion in Cell Biology 12: p. 186-192. 2000.
40. Mason, J.M., D.J. Morrison, M.A. Basson, and J.D. Licht, "Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling". Trends Cell Biol, 16(1): p. 45-54. 2006.
41. Lowe SW, L.A., "Apoptosis in cancer.". Carcinogenesis, 21(3). 2000.
42. Keith M. Jacobs, S.R.B., Daniel J. Ferraro, Jerry J. Jaboin, Dennis E. Hallahan and Dinesh Thotala, "GSK-3: A Bifunctional Role in Cell Death Pathways". International Journal of Cell Biology. 2012.
43. Hussein, M.R., A.K. Haemel, and G.S. Wood, "Apoptosis and melanoma: molecular mechanisms". J Pathol, 199(3): p. 275-88. 2003.
44. Gozuacik, D. and A. Kimchi, "Autophagy as a cell death and tumor suppressor mechanism". Oncogene, 23(16): p. 2891-906. 2004.
45. Nadzeya Goncharenko-Khaider, I.M., Denis Lane, Claudine Rancourt and Alain Piché, "Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis". Molecular Cancer, 11(84). 2012.
46. Changchien, J.J., Y.J. Chen, C.H. Huang, T.L. Cheng, S.R. Lin, and L.S. Chang, "Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression". Toxicol Appl Pharmacol, 284(1): p. 33-41. 2015.
47. Wang, Y.F., C.C. Jiang, K.A. Kiejda, S. Gillespie, X.D. Zhang, and P. Hersey, "Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1". Clin Cancer Res, 13(16): p. 4934-42. 2007.
48. Sevilla, L., A. Zaldumbide, P. Pognonec, and K.E. Boulukos, "Transcriptional regulation of bcl-x gene encoding the anti-apoptotic BCL-xl protein by Ets, Rel/NFkB, STAT and AP1 transcription factor famillies". Histology and Histopathology, 16(2): p. 595-601. 2001.
49. Booy, E.P., E.S. Henson, and S.B. Gibson, "Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer". Oncogene, 30(20): p. 2367-78. 2011.
50. Townsend, K., P. Zhou, L. Qian, C. Bieszczad, C. Lowrey, A. Yen, and R. Craig, "Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation". The journal of biological chemistry, 274(3): p. 1801-13. 1999.
51. Becker, T.M., S.C. Boyd, B. Mijatov, K. Gowrishankar, S. Snoyman, G.M. Pupo, R.A. Scolyer, G.J. Mann, R.F. Kefford, X.D. Zhang, and H. Rizos, "Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor". Oncogene, 33(9): p. 1158-66. 2014.
52. Jung-Jung Changchien, Y.-J.C., Chia-Hui Huang, Tian-Lu Cheng, Shinne-Ren Lin, Long-Sen Chang, "Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression". Toxicology and Applied Pharmacology, 284: p. 33-41. 2015.
53. McDermott, J., Jimeno, A., "Pembrolizumab: PD-1 inhibition as a therapeutic strategy in cancer". Drugs Today 1. 2015.
54. Li, M., C. Marin-Muller, U. Bharadwaj, K.H. Chow, Q. Yao, and C. Chen, "MicroRNAs: control and loss of control in human physiology and disease". World J Surg, 33(4): p. 667-84. 2009.
55. Bartel, D.P., "MicroRNAs: Genomics, Biogenesis, Mecahnism, and Function". Cell, 116. 2004.
56. Gurianova, V., D. Stroy, R. Ciccocioppo, I. Gasparova, D. Petrovic, M. Soucek, V. Dosenko, and P. Kruzliak, "Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart". Cell Biochem Funct, 33(8): p. 509-18. 2015.
57. Chang, T.C., D. Yu, Y.S. Lee, E.A. Wentzel, D.E. Arking, K.M. West, C.V. Dang, A. Thomas-Tikhonenko, and J.T. Mendell, "Widespread microRNA repression by Myc contributes to tumorigenesis". Nat Genet, 40(1): p. 43-50. 2008.
58. Mlcochova, J., P. Faltejskova, R. Nemecek, M. Svoboda, and O. Slaby, "MicroRNAs targeting EGFR signalling pathway in colorectal cancer". J Cancer Res Clin Oncol, 139(10): p. 1615-24. 2013.
59. Bader, A.G., D. Brown, and M. Winkler, "The promise of microRNA replacement therapy". Cancer Res, 70(18): p. 7027-30. 2010.
60. Jansson, M.D. and A.H. Lund, "MicroRNA and cancer". Mol Oncol, 6(6): p. 590-610. 2012.
61. Jacobsen, A., J. Silber, G. Harinath, J.T. Huse, N. Schultz, and C. Sander, "Analysis of microRNA-target interactions across diverse cancer types". Nat Struct Mol Biol, 20(11): p. 1325-32. 2013.
62. Moskwa, P., F.M. Buffa, Y. Pan, R. Panchakshari, P. Gottipati, R.J. Muschel, J. Beech, R. Kulshrestha, K. Abdelmohsen, D.M. Weinstock, M. Gorospe, A.L. Harris, T. Helleday, and D. Chowdhury, "miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors". Mol Cell, 41(2): p. 210-20. 2011.
63. Zhang, S., C. Shan, G. Kong, Y. Du, L. Ye, and X. Zhang, "MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-kappaB-inducing kinase (NIK)". Oncogene, 31(31): p. 3607-20. 2012.
64. Taguchi, Y.H. and Y. Murakami, "Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers". PLoS One, 8(6): p. e66714. 2013.
65. Kosaka, N., H. Iguchi, and T. Ochiya, "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis". Cancer Sci, 101(10): p. 2087-92. 2010.
66. Broderick, J.A. and P.D. Zamore, "MicroRNA therapeutics". Gene Ther, 18(12): p. 1104-10. 2011.
67. Wahid, F., A. Shehzad, T. Khan, and Y.Y. Kim, "MicroRNAs: synthesis, mechanism, function, and recent clinical trials". Biochim Biophys Acta, 1803(11): p. 1231-43. 2010.
68. Bandiera, S., S. Pfeffer, T.F. Baumert, and M.B. Zeisel, "miR-122--a key factor and therapeutic target in liver disease". J Hepatol, 62(2): p. 448-57. 2015.
69. Selbach, M., B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky, "Widespread changes in protein synthesis induced by microRNAs". Nature, 455(7209): p. 58-63. 2008.
70. Hatley, M.E., D.M. Patrick, M.R. Garcia, J.A. Richardson, R. Bassel-Duby, E. van Rooij, and E.N. Olson, "Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21". Cancer Cell, 18(3): p. 282-93. 2010.
71. Segura, M.F., H.S. Greenwald, D. Hanniford, I. Osman, and E. Hernando, "MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy". Carcinogenesis, 33(10): p. 1823-32. 2012.
72. McCubrey, J.A., L.S. Steelman, W.H. Chappell, S.L. Abrams, E.W. Wong, F. Chang, B. Lehmann, D.M. Terrian, M. Milella, A. Tafuri, F. Stivala, M. Libra, J. Basecke, C. Evangelisti, A.M. Martelli, and R.A. Franklin, "Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance". Biochim Biophys Acta, 1773(8): p. 1263-84. 2007.
73. Chong, H., H.G. Vikis, and K.-L. Guan, "Mechanisms of regulating the Raf kinase family". Cellular Signalling, 15(5): p. 463-469. 2003.
74. Sullivan, R.J. and K. Flaherty, "MAP kinase signaling and inhibition in melanoma". Oncogene, 32(19): p. 2373-9. 2013.
75. Eric W. Josepha, C.A.P., Poulikos I. Poulikakos, Madhavi Tadi, Weiqing Wang, Barry S. Taylord, Ensar Halilovic, Yogindra Persaud, Feng Xing, Agnes Viale, James Tsai, Paul B. Chapman, Gideon Bollag, David B. Solitf, and Neal Rosen, "The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner". PNAS, 107: p. 14903–14908. 2012.
76. Lito, P., Christine A. Pratilas, Eric W. Joseph, M. Tadi, E. Halilovic, M. Zubrowski, A. Huang, Wai L. Wong, Margaret K. Callahan, T. Merghoub, Jedd D. Wolchok, E. de Stanchina, S. Chandarlapaty, Poulikos I. Poulikakos, James A. Fagin, and N. Rosen, "Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas". Cancer Cell, 22(5): p. 668-682. 2012.
77. Tesio, M. and A. Trumpp, "Breaking the cell cycle of HSCs by p57 and friends". Cell Stem Cell, 9(3): p. 187-92. 2011.
78. Sun, W., Y.S. Julie Li, H.D. Huang, J.Y. Shyy, and S. Chien, "microRNA: a master regulator of cellular processes for bioengineering systems". Annu Rev Biomed Eng, 12: p. 1-27. 2010.
79. Vaira, V., L. Roncoroni, D. Barisani, G. Gaudioso, S. Bosari, G. Bulfamante, L. Doneda, D. Conte, C. Tomba, M.T. Bardella, S. Ferrero, M. Locatelli, and L. Elli, "microRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts". Clin Sci (Lond), 126(6): p. 417-23. 2014.
80. Volinia, S., G.A. Calin, C.-G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R.L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C.C. Harris, and C.M. Croce, "A microRNA expression signature of human solid tumors defines cancer gene targets". Proceedings of the National Academy of Sciences of the United States of America, 103(7): p. 2257-2261. 2006.
81. Hideo Hidaka, N.S., Hirofumi Yoshino, Takeshi Yamasaki, Yasutoshi Yamada, Nijiro Nohata, Miki Fuse, Masayuki Nakagawa and Hideki Enokida, "Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma". Oncotarget, 3(44-57). 2012.
82. V. Medina-Villaamil, S.M.-B., P. Portela-Pereira, M. Quindós-Varelac, Santamarina-Caínzos, L.M. Antón-Aparicioc, F. Gómez-Veiga, "Circulating MicroRNAs in blood of patients with prostate cancer". Actas Urológicas Españolas, 38: p. 633-639. 2014.
83. Zhang, S., C. Shan, G. Kong, Y. Du, L. Ye, and X. Zhang, "MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-[kappa]B-inducing kinase (NIK)". Oncogene, 31(31): p. 3607-3620. 2012.
84. Chen, G., L. Sun, M. Yu, D. Meng, W. Wang, Y. Yang, and H. Yang, "The Jagged-1/Notch-1/Hes-1 pathway is involved in intestinal adaptation in a massive small bowel resection rat model". Dig Dis Sci, 58(9): p. 2478-86. 2013.
85. Li, Y., J. Xu, H. Chen, J. Bai, S. Li, Z. Zhao, T. Shao, T. Jiang, H. Ren, C. Kang, and X. Li, "Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression". Nucleic Acids Res, 41(22): p. e203. 2013.
86. Wang, F., S.C. Wong, L.W. Chan, W.C. Cho, S.P. Yip, and B.Y. Yung, "Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway". Biomed Res Int, 2014: p. 676724. 2014.
87. Cava, C., G. Bertoli, M. Ripamonti, G. Mauri, I. Zoppis, P.A. Della Rosa, M.C. Gilardi, and I. Castiglioni, "Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition". PLoS One, 9(5): p. e97681. 2014.
88. Endo, H., T. Muramatsu, M. Furuta, N. Uzawa, A. Pimkhaokham, T. Amagasa, J. Inazawa, and K. Kozaki, "Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer". Carcinogenesis, 34(3): p. 560-9. 2013.
89. Anwar, S.L. and U. Lehmann, "DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma". World J Gastroenterol, 20(24): p. 7894-7913. 2014.
90. Huang, Y.W., C.T. Kuo, J.H. Chen, P.J. Goodfellow, T.H. Huang, J.S. Rader, and D.S. Uyar, "Hypermethylation of miR-203 in endometrial carcinomas". Gynecol Oncol, 133(2): p. 340-5. 2014.
91. Shivapurkar, N., L.M. Weiner, J.L. Marshall, S. Madhavan, A. Deslattes Mays, H. Juhl, and A. Wellstein, "Recurrence of early stage colon cancer predicted by expression pattern of circulating microRNAs". PLoS One, 9(1): p. e84686. 2014.
92. Costa, F.F., J.M. Bischof, E.F. Vanin, R.R. Lulla, M. Wang, S.T. Sredni, V. Rajaram, F. Bonaldo Mde, D. Wang, S. Goldman, T. Tomita, and M.B. Soares, "Identification of microRNAs as potential prognostic markers in ependymoma". PLoS One, 6(10): p. e25114. 2011.
93. Glud, M. and R. Gniadecki, "MicroRNAs in the pathogenesis of malignant melanoma". J Eur Acad Dermatol Venereol, 27(2): p. 142-50. 2013.
94. Kefas, B., J. Godlewski, L. Comeau, Y. Li, R. Abounader, M. Hawkinson, J. Lee, H. Fine, E.A. Chiocca, S. Lawler, and B. Purow, "microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma". Cancer Res, 68(10): p. 3566-72. 2008.
95. Zafari, S., C. Backes, P. Leidinger, E. Meese, and A. Keller, "Regulatory microRNA networks: complex patterns of target pathways for disease-related and housekeeping microRNAs". Genomics Proteomics Bioinformatics, 13(3): p. 159-68. 2015.
96. Kent, O.A., R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, and J.T. Mendell, "Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway". Genes Dev, 24(24): p. 2754-9. 2010.
97. Adam A. Friedman, G.T., Rohit Singh, Dong Yan, Arunachalam Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Pacifico, Thilakam Murali, and J.M.A. Russell L. Finley Jr., Bonnie Berger, Norbert Perrimon,, "Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal–Regulated Kinase Signaling". Science signaling, 4. 2011.
98. Scott M. Carlson, C.R.C., Adam Labadorf, Carol J. Lam, Katrin Schmelzle, Ernest Fraenkel and Forest M. White, "Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3". Science Signaling 4: p. 1-10. 2011.
99. Bennett, P.E., L. Bemis, D.A. Norris, and Y.G. Shellman, "miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma". Physiol Genomics, 45(22): p. 1049-59. 2013.
100. Stefano Fogli, B.P., Sara Carpi, Barbara Pardini, Alessio Naccarati, Nevio Dubbini, Maria Lanza, and A.R.a.P.N. Maria Cristina Breschi, "Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma". Tumor Biology: p. 1-8. 2017.
101. Kim, E.J., I.H. Kang, J.W. Lee, W.G. Jang, and J.T. Koh, "MiR-433 mediates ERRgamma-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells". Life Sci, 92(10): p. 562-8. 2013.
102. Yamane, K., M. Jinnin, T. Etoh, Y. Kobayashi, N. Shimozono, S. Fukushima, S. Masuguchi, K. Maruo, Y. Inoue, T. Ishihara, J. Aoi, Y. Oike, and H. Ihn, "Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK". J Mol Med (Berl), 91(1): p. 69-81. 2013.
103. Kanno, T., T. Takahashi, T. Tsujisawa, W. Ariyoshi, and T. Nishihara, "Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts". J Cell Biochem, 101(5): p. 1266-77. 2007.
104. Poulikakos, P.I. and N. Rosen, "Mutant BRAF melanomas--dependence and resistance". Cancer Cell, 19(1): p. 11-5. 2011.
105. Christine A. Pratilasa, B.S.T., Qing Ye, Agnes Viale, Chris Sander, David B. Solitf, and Neal Rosen, "V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway". PNAS, 106: p. 4519-4524. 2009.
106. Paroo, Z., X. Ye, S. Chen, and Q. Liu, "Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling". Cell, 139(1): p. 112-22. 2009.
107. Chen, L., W. Zhang, W. Yan, L. Han, K. Zhang, Z. Shi, J. Zhang, Y. Wang, Y. Li, S. Yu, P. Pu, C. Jiang, T. Jiang, and C. Kang, "The putative tumor suppressor miR-524-5p directly targets Jagged-1 and Hes-1 in glioma". Carcinogenesis, 33(11): p. 2276-82. 2012.
108. Shlien, A. and D. Malkin, "Copy number variations and cancer". Genome Medicine, 1(6): p. 62. 2009.
109. Eguchi, S., Y. Yamamoto, S. Sakano, Y. Chochi, M. Nakao, S. Kawauchi, T. Furuya, A. Oga, H. Matsuyama, and K. Sasaki, "The loss of 8p23.3 is a novel marker for predicting progression and recurrence of bladder tumors without muscle invasion". Cancer Genet Cytogenet, 200(1): p. 16-22. 2010.
110. Muscheck, M., F. Sükös, T. Pesti, and G. Kovacs, "High Density Deletion Mapping of Bladder Cancer Localizes the Putative Tumor Suppressor Gene Between Loci D8S504 and D8S264 at Chromosome 8p23.3". Laboratory Investigation 80(7): p. 1089-1093. 2000.
111. Han, S., A. Park, E. Shin, H.J. Kim, J.Y. Kim, J.Y. Kim, and G. Gwak, "Genomic change of chromosome 8 predicts the response to taxane-based neoadjuvant chemotherapy in node-positive breast cancer". Oncology Reports, 24(1): p. 121-128. 2010.
112. Leigh-Ann, M. and M. Paul R., "MicroRNA: Biogenesis, Function and Role in Cancer". Current Genomics, 11: p. 537–561. 2010.
113. Chen, H.C., G.H. Chen, Y.H. Chen, W.L. Liao, C.Y. Liu, K.P. Chang, Y.S. Chang, and S.J. Chen, "MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma". Br J Cancer, 100(6): p. 1002-11. 2009.
114. Ding, Y., V.G. Prieto, P.S. Zhang, S. Rosenthal, K.J. Smith, H.G. Skelton, and A.H. Diwan, "Nuclear expression of the antiapoptotic protein survivin in malignant melanoma". Cancer, 106(5): p. 1123-9. 2006.
115. Wong, R.P., S. Khosravi, M. Martinka, and G. Li, "Myeloid Leukemia-1 expression in benign and malignant melanocytic lesions". Oncology Reports, 19: p. 933-937. 2008.
116. Zhuang, L., C.S. Lee, R.A. Scolyer, S.W. McCarthy, X.D. Zhang, J.F. Thompson, and P. Hersey, "Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma". Mod Pathol, 20(4): p. 416-26. 2007.
117. Endo, H., T. Muramatsu, M. Furuta, N. Uzawa, A. Pimkhaokham, T. Amagasa, J. Inazawa, and K. Kozaki, "Potential of tumor-supressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer". Carcinogenesis, 34(3): p. 560-9. 2012.
118. Zhu, Y., P. Qiu, and Y. Ji, "TCGA-assembler: open-source software for retrieving and processing TCGA data". Nat Methods, 11(6): p. 599-600. 2014.
119. Liu, S.M., J. Lu, H.C. Lee, F.C. Chung, and N. Ma, "miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2". Oncotarget, 5(19): p. 9444-59. 2014.
120. Chen, J., X. Zhang, C. Lentz, M. Abi-Daoud, G.C. Pare, X. Yang, H.E. Feilotter, and V.A. Tron, "miR-193b Regulates Mcl-1 in Melanoma". Am J Pathol, 179(5): p. 2162-8. 2011.
121. Olivieri, M., M. Ferro, S. Terreri, M. Durso, A. Romanelli, C. Avitabile, O. De Cobelli, A. Messere, D. Bruzzese, I. Vannini, L. Marinelli, E. Novellino, W. Zhang, M. Incoronata, G. Ilardi, S. Stainbano, L. Marra, R. Franco, S. Perdona, D. Terracciano, B. Czerniak, G.L. Liguori, V. Colonna, M. Fabbri, F. Febbraio, G.A. Calin, and A. Cimmino, "Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis". Oncotarget, 7(15): p. 651–669. 2016.
122. Samis, J., E.F. Vanin, S.T. Sredni, F. de Bonaldo Mde, F.F. Costa, T. Tomita, R. Habiby, D. Zimmerman, and M.B. Soares, "Extensive miRNA expression analysis in craniopharyngiomas". Childs Nerv Syst, 32(9): p. 1617-24. 2016.
123. Karen J. Townsend, P.Z., Liping Qian, Christine K. Bieszczad,Christopher H. Lowrey, Andrew Yen, and Ruth W. Craig, "Regulation of MCL1 through a Serum Response Factor/Elk-1-mediated Mechanism Links Expression of a Viability-promoting Member of the BCL2 Family to the Induction of Hematopoietic Cell Differentiation". The Journal of Biological Chemistry, 274(3): p. 1801-1813. 1999.
124. Bushati, N. and S.M. Cohen, "microRNA functions". Annu Rev Cell Dev Biol, 23: p. 175-205. 2007.
125. Kasinski, A.L., K. Kelnar, C. Stahlhut, E. Orellana, J. Zhao, E. Shimer, S. Dysart, X. Chen, A.G. Bader, and F.J. Slack, "A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer". Oncogene, 34(27): p. 3547-55. 2015.
126. Noguchi, S., Y. Yasui, J. Iwasaki, M. Kumazaki, N. Yamada, S. Naito, and Y. Akao, "Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways". Cancer Lett, 328(2): p. 353-61. 2013.
127. Dong, C.G., W.K. Wu, S.Y. Feng, X.J. Wang, J.F. Shao, and J. Qiao, "Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells". Int J Oncol, 41(3): p. 1005-12. 2012.
128. Chou, T.C., "Drug combination studies and their synergy quantification using the Chou-Talalay method". Cancer Res, 70(2): p. 440-6. 2010.
129. Wang, X., X. Zhao, P. Gao, and M. Wu, "c-Myc modulates microRNA processing via the transcriptional regulation of Drosha". Sci Rep, 3: p. 1942. 2013.
130. Miller, K.J., D.A. Brown, M.M. Ibrahim, T.D. Ramchal, and H. Levinson, "MicroRNAs in skin tissue engineering". Adv Drug Deliv Rev, 88: p. 16-36. 2015.
131. Peng, W., J. Hu, X.D. Zhu, X. Liu, C.C. Wang, W.H. Li, and Z.Y. Chen, "Overexpression of miR-145 increases the sensitivity of vemurafenib in drug-resistant colo205 cell line". Tumour Biol, 35(4): p. 2983-8. 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top