跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂庚陸
研究生(外文):Geng-Lu Lu
論文名稱:BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ保護層結構於固態氧化物燃料電池特性分析
論文名稱(外文):BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ protection structures applied in proton-conducting solid oxide fuel cell (P-SOFC)
指導教授:李勝偉
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:42
中文關鍵詞:固態氧化物燃料電池電解質保護層三明治結構
外文關鍵詞:Solid oxide of fuel cells (SOFC)ElectrolyteProtection layerSandwich structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ三明治結構(Sandwich structure)來保護中間層,此種電解質材料主要應用於質子傳導型固態氧化物燃料電池,利用固態反應法來製作BaCe0.8Y0.2O3-δ(BCY) 與BaCe0.6Zr0.2Y0.2O3-δ(BCZY) 粉末,再利用刮刀塗佈法做成個別電解質片,堆疊成所需結構後水壓與燒結成試片。藉由SEM、XRD來進行材料與結構分析。
用SEM觀察三個試片剖面,其中BCY、BCZY與三明治結構分別厚度為66.67um、68.63um、73.52um,且其剖面為緊密結構,。

第二部分用XRD來確認鈣鈦礦相,單相之鈣鈦礦立方晶結構,主要出現6個明顯的主峰訊號,分別為(110)、(200)、(211)、(220)、(310)和(222)(JCPDS #89-2485),並且沒有其他二次相訊號,因此燒結後所製備試片為單相之鈣鈦礦立方晶結構;接著在600℃ CO2氣氛下做毒化反應測其化學穩定性,BCY在持溫2小時即產生二次相,BCZY於16小時才產生微弱的二次相訊號,說明BCZY於三明治結構可以有效保護中間BCY層。

最後量測其電導率,在還未毒化前BCY、BCZY與三明治結構在800℃下分別為0.0027、0.0018與0.0026(S/cm),經過CO2 16小時後量測的電導率曲線,BCY電解質在化學穩定性表現時就比較差,電導率因二次相影響有顯著的下降(800℃,~0.0006S/cm),BCZY則因其化學穩定性佳,與毒化前一樣(800℃,~0.0018S/cm),Sandwich則略為下降,但因外層有BCZY保護,所以下降幅度有限(800℃,~0.0019S/cm),但因在量測時到接觸阻抗影響,其數值與理論數值有所差異。
To protect proton-conducting solid oxide fuel cells (H+-SOFCs) from CO2 poisoning and to have basically ion conductivity, the sandwich structure of BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ was used in this study. BaCe0.8Y0.2O3-δ (BCY) and BaCe0.6Zr0.2Y0.2O3-δ (BCZY) powders were synthesized by solid-state reaction method (SSR). After sintering, BCY, BCZY and the sandwich samples were analyzed by scanning electron microscope (SEM), x-ray diffraction (XRD) and conductivity measurements.
The SEM images showed that the electrolytes were highly dense after sintering at 1550℃ for 12 hrs, indicating that the fuel leakage could be ignored. The thicknesses of BCY, BCZY and the sandwich structures were well controlled. The six main peaks (110), (200), (211), (220), (310), and (222) shown in the XRD patterns confirmed the perovskite phase. After poisoning treatment in CO2 atmosphere at 600℃, BCZY and the sandwich structure showed higher stability than that of BCY.
The conductivity of the sandwich structure (800℃,0.0026 S/cm) was found to locate between BCY (800℃,0.0027 S/cm) and BCZY (800℃,0.0018 S/cm). After poisoning treatment, the BCY conductive value obviously decreased (800℃,~0.0006S/cm) since the second phase hindered its ion transferring. The sandwich structure almost maintain its conductivity because its protection layers slowed down the pensioning process (800℃,~0.0019S/cm). However, all conductive values were smaller than the values in the previous study. It would be attributed to the contact resistances between electrolyte and metal contacts.
摘要 i
Abstract ii
致謝 iiv
目錄 v
圖目錄 vii
表目錄 vii
前言 - 1 -
一. 緒論 - 2 -
1.1. 燃料電池之簡介[1.1]-[1.3] - 2 -
1.2. 固態氧化物燃料電池(SOFC) - 3 -
1.2.1. SOFC之原理[1.4-1.7] - 3 -
1.3.2. SOFC之優點 - 4 -
1.3.3. SOFC之缺點 - 5 -
1.3.4. SOFC之結構 - 5 -
1.3.5. SOFC電解質材料製備方式[1.19] - 6 -
1.4. SOFC電解質材料[1.27- 1.28] - 7 -
1.4.1. 螢石(Fluorite)結構 - 7 -
1.4.2. 鈣鈦礦(Perovskite)結構及性質 - 7 -
1.4.3. 質子傳輸機制 - 8 -
1.4.4. 質子傳輸型電解質 - 8 -
1.5. 三相界面(Three Phase Boundary, TPB) - 12 -
1.6. 研究動機 - 13 -
二. 實驗方法 - 14 -
2.1. 實驗藥品 - 14 -
2.2. 實驗儀器 - 14 -
2.2.1. X光繞射儀 - 14 -
2.2.2. 掃描式電子顯微鏡(Scanning Electron Microscopy) - 15 -
2.2.3. 行星式球磨機(Planetary milling) - 15 -
2.2.4. 滾筒式球磨機 - 15 -
2.2.5. 刮刀塗佈機Blade coating machine - 15 -
2.2.6. 電性分析「離子與電子傳輸速度」 - 16 -
2.2.7. 化學穩定性 - 16 -
2.3. 實驗方法與流程 - 17 -
2.3.1. BaCe0.6Zr0.2Y0.2O3-δ粉末製備 - 17 -
2.3.2. BaCe0.8Y0.2O3-δ粉末製備 - 17 -
2.3.3. 刮刀成型 - 18 -
2.3.4. 疊壓-共燒 - 18 -
三. 結果與討論 - 19 -
3.1. 材料分析 - 19 -
3.1.1. 形貌與結構分析 - 19 -
3.1.2. 化學熱穩定性分析 - 22 -
3.2. 電性分析 - 24 -
3.3. 結論 - 25 -
四. 參考文獻 - 26 -
[1.1] W.R. Grove, “On voltaic series and the combination of gases by
platinum”, Philosophical Magazine Series 3, 14 (1839)pp. 127-130.
[1.2] Grove, W. R., “Note sur une pile voltaïque d'une grande énergie,
construite par M. Grove; communication de M. Becquerel”, Comptes Rendus, Vol. 8, (1839)pp. 497
[1.3] Hoogers, G. (Ed.). “Fuel cell technology handbook. CRC press”. (2002).
[1.4] Badwal, S. P. S., et al. "Review of progress in high temperature solid oxide fuel cells." ChemInform 46.31 (2015).
[1.5] Bossell, U. “The birth of the Fuel Cell 1835–1845. In European Fuel Cell Forum”. (2000).
[1.6] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005
[1.7] Barbir, F. “PEM fuel cells: theory and practice. Academic Press”. (2012).
[1.8] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3−δon microstructural andelectrical properties of proton conducting Ni–BaCe0.9Y0.1O3−δanodes”, Journal of Alloys and Compounds, 509 (2011) pp. 1157–1162.
[1.9] B. H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode
microstructure for SOFCs based on proton conductors”, Journal of Hydrogen Energy, 37 (2012) pp. 18342-18348.
[1.10] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochemistry Communications, 13(2011) pp. 959-962.
[1.11] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δelectrolyte membrane for proton-conducting solid oxide fuel cell”, Electrochemistry Communications, 10 (2008) pp. 1598-1601.
[1.12] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim,
“Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, 33 (2008) pp. 2826-2833.
[1.13] Z.H. Chen, R. Rana, W. Zhou, Z.P. Shao, S.M. Liu, ” Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, 52 (2007) pp. 7343-7351.
[1.14] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1−xSrxCo1−yFeyO2.5:A molecular dynamics study”, Solid State Ionics, 177 (2007) pp. 3425–3431.
[1.15] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, ” Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition”, Electrochimica Acta, 53 (2008) pp. 4370-4380.
[1.16] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, 26 (2006) 2827-2832.
[1.17] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[1.18] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin, N.P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique”, Journal of Power Sources, 186 (2009) pp. 244–251.
[1.19] Shao, Z., Zhou, W., Zhu, Z. “Advanced synthesis of materials for
intermediate-temperature solid oxide fuel cells”Progress in Materials Science, 57 (4), (2012)pp. 804-874.
[1.20] W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, 30 (1997) pp. 93-97.
[1.21] Sui, J., Cao, L., Zhu, Q., Yu, L., Zhang, Q., Dong, L.“Effects of proton-conducting electrolyte microstructure on the performance of electrolyte-supported solid oxide fuel cells” Journal of Renewable and Sustainable Energy, 5 (2) (2013)
[1.22] K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138 (2000) pp. 91–98.
[1.23] K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, 125 (1999) pp. 355–367.
[1.24] Rinlee Butch Cervera , Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics,178 (2007) pp. 569–574.
[1.25] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[1.26] Bi, Lei, et al. "BaZr0. 8Y0. 2O3− δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method." Journal of The Electrochemical Society 158.7 (2011): B797-B803.
[1.27] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−αcomposite cathode for solid oxide fuel cells”, Journal of Power Sources, 204 (2012) pp. 89–93.
[1.28] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, G.Y. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, Journal of Power Sources, 186 (2009) pp. 58–61.
[1.29] Omar, Shobit, Eric D. Wachsman, and Juan C. Nino. "A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes." Solid State Ionics 177.35 (2006): 3199-3203.
[1.30] H. Inaba, H. Tagawa, ” Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) pp. 1- 16.
[1.31] M. Johnsson, P. Lemmens, “Crystallography and Chemistry of Per-ovskites,” Handbook of Magnetism and Advanced Magnetic Media, pp. 2098–106.
[1.32] X.C. Liu, R.Z. Hong, C.S. Tian, “Tolerance factor and the stability discussion of ABO3-type ilmenite”, J Mater Sci : Mater Electron, 20 (2009) pp. 323–327.
[1.33] E. Traversa, E.Fabbri, formerly National Institute for Material Science, Japan.
[1.34] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, 244 (1995) pp. 456-462.
[1.35] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computermodelling tour”, J. Mater. Chem., 10 (2000) pp. 1027-1038.
[1.36] K.D. Kreuer, ” Proton Conductivity: Materials and Applications”, Chem. Mater. 8 (1996) pp. 610-641
[1.37] Kreuer, K.D. ”Proton-Conducting Oxides” Annual Review of Materials Research, 33, (2003) pp. 333-359.
[1.38] Rossmeisl, Jan, and Wolfgang G. Bessler. "Trends in catalytic activity for SOFC anode materials." Solid State Ionics 178.31 (2008): 1694-1700.
[1.39] Zhu, W. Z., and S. C. Deevi. "A review on the status of anode materials for solid oxide fuel cells." Materials Science and Engineering: A 362.1 (2003): 228-239.
[1.40] E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode“, Nature, 400 (1999) pp. 649-651.
[1.41] S.H. Chan, H.K. Ho, Y. Tian, ”Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, 28 (2003) pp. 889 – 900.
[1.42] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) pp. 5981–6000.
[1.43] Z.P. Shao, S. M. Haile, ” A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) pp. 170-173.
[1.44] L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, ” A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, advanced material, 20 (2008) pp. 3280–3283.
[1.45] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, ” H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor”, Ionics , 15 (2009) pp. 385–388.
[1.46] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, ”Proton Conduction in Sintered Oxides Based on BaCe03“, Journal of Electrochemical Society, 135 (1988) pp. 529–533.
[1.47] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell”, Journal of Power Sources, 161 (2006) pp. 1084–1095.
[1.48] Z. Zhong, ”Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, 178 (2007) pp. 213–220.
[1.49] M.Y. Gong, X. Liu, J. Trembly, C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application”, Journal of Power Sources, 168 (2007) pp. 289–298.
[1.50] P. Babilo, T. Uda, S.M. Haile, “Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity”, Materials Research Society, 22 (2007) pp. 1322-1330.
[1.51] Iijima, Masahiko, et al. "Cell Performance Stability of HMFC using Ba (Ce1-xZrx)0.8 Y0.2 O3 Perovskite Type Proton Conductor as Electrolyte." MRS Proceedings. Vol. 972. Cambridge University Press, (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊