|
1. T.R. Ashworth, “A case of cancer in which cells similar to those in the tumours were seen in the blood after death”, Australian Medical Journal, 14, 146-147 (1869). 2. S. Yin, Y.L. Wu, B. Hu, Y. Wang, P. Cai, C.K. Tan, D. Qi, L. Zheng, W. R. Leow, N. S. Tan, S. Wang, and X. Chen, “Three-Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells”, Advanced Materials Interfaces, 1, 1300043 (2014). 3. F. Zheng, Y. Cheng, J. Wang, J. Lu, B. Zhang, Y. Zhao, and Z. Gu, “Aptamer-Functionalized Barcode Particles for the Capture and Detection of Multiple Types of Circulating Tumor Cells”, Advanced Materials, 26, 7333-7338 (2014). 4. Ana M.C. Barradas, and Leon W.M.M. Terstappen, “Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis”, Cancers, 5, 1619-1642 (2013). 5. S. Valastyan, and R.A. Weinberg, “Tumor metastasis: molecular insights and evolving paradigms”, Cell, 147, 275-292 (2011). 6. P. Klaus, and A.P. Catherine, “Circulating tumour cells in cancer patients: challenges and perspectives”, Trends in Molecular Medicine, 16, 398-406 (2010). 7. J. Kaiser, “Cancer’s Circulation Problem”, Science, VOL327, 1072-1074 (2010). 8. Y.F. Sun, X.R. Yang, J. Zhou, S.J. Qiu, J. Fan, Y. Xu, “Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance”, Journal of Cancer Research and Clinical Oncology, 137, 1151-1173 (2011). 9. D.J. Kim, W.Y. Lee, N.W. Park, G.S. Kim, K.M. Lee, J. Kim, M.K. Choi, G.H. Lee, W. Han, S.K. Lee, “Drug response of captured BT20 cells and evaluation of circulating tumor cells on a silicon nanowire platform”, Biosensors and Bioelectronics, 67, 370-378 (2015). 10. N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao, Q. Shen, R. He, L. Hong, W. Liu, S. Guo, K. Liu, H.R. Tseng, B. Xiong, and X.Z. Zhao, “Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients”, Advanced Materials, 24, 2756-2760 (2012). 11. S. Hou, H. Zhao, L. Zhao, Q. Shen, K.S. Wei, D.Y. Suh, A. Nakao, M.A. Garcia, M. Song, T. Lee, B. Xiong, S.C. Luo, H.R. Tseng, and H.H. Yu, “Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures”, Advanced Materials, 25, 1547-1551 (2013). 12. R. Gertler, R. Rosenberg, K. Fuehrer, M. Dahm, H. Nekarda, and J.R. Siewert, “Detection of Circulating Tumor Cells in Blood Using an Optimized Density Gradient Centrifugation”, Recent Results in Cancer Research, 162, 149-155 (2003). 13. M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells”, Analytical Chemistry, 82, 6629-6635 (2010). 14. S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R. J. Cote, Y.C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells”, Journal of Chromatography, 1126, 154-161 (2007). 15. S.J. Tana, R.L. Lakshmic, P. Chenc, W.T. Limd, L. Yobas, C.T. Lim, “Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients”, Biosensors and Bioelectronics, 26, 1701-1705 (2010). 16. J. Meng, H. Liu, and S. Wang, “Nanostructured Substrates for Circulating Tumor Cell Capturing”, Soft Matter Nanotechnology: From Structure to Function, First Edition, 293-308 (2015). 17. L. Bai, Y. Du, J. Peng, Y. Liu, Y. Wang, Y. Yang, and C. Wang, “Peptide-based isolation of circulating tumor cells by magnetic nanoparticles”, Journal of Materials Chemistry B, 2, 4080-4088 (2014). 18. L. Wang, W. Asghar, U. Demirci, and Y. Wan, “Nanostructured substrates for isolation of circulating tumor cells”, Nano Today, 8(4), 347-387 (2013). 19. J. Sekine, S.C. Luo, S. Wang, B. Zhu, H.R. Tseng, and H.H. Yu, “Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures”, Advanced Materials, 23, 4788-4792 (2011). 20. L.P. Xu, J. Meng, S. Zhang, X. Ma, and S. Wang, “Amplified effect of surface charge on cell adhesion by nanostructures”, Nanoscale, 8, 12540 (2016). 21. S.K. Lee, G.S. Kim, Y. Wu, D.J. Kim, Y. Lu, M. Kwak, L. Han, J.H. Hyung, J.K. Seol, C. Sander, A. Gonzalez, J. Li, and R. Fan, “Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells”, Nano Letters, 12, 2697-2704 (2012). 22. X. Yu, R. He, S. Li, B. Cai, L. Zhao, L. Liao, W. Liu, Q. Zeng, H. Wang, S.S. Guo, and X.Z. Zhao, “Magneto-Controllable Capture and Release of Cancer Cells by Using a Micropillar Device Decorated with Graphite Oxide-Coated Magnetic Nanoparticles”, Small, 9(22), 3895-3901 (2013). 23. A.D. Hughes, and M.R. King, “Use of Naturally Occurring Halloysite Nanotubes for Enhanced Capture of Flowing Cells, Langmuir, 26(14), 12155-12164 (2010). 24. Z. Zha, L. Jiang, Z. Dai, and X. Wu, “A biomimetic mechanism for antibody immobilization on lipid nanofibers for cell capture”, APPLIED PHYSICS LETTERS, 101, 193701 (2012). 25. S. Yin, Y.L. Wu, B. Hu, Y. Wang, P. Cai, C. K. Tan, D. Qi, L. Zheng, W.R. Leow, N. S. Tan, S. Wang, and X. Chen, “Three-Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells”, Advanced Materials Interfaces, 1, 1300043 (2014). 26. S. Wang, K. Liu, J. Liu, Z.T.F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y.K. Lee, L.W. K. Chung, J. Huang, M. Rettig, D. Seligson, K.N. Duraiswamy, C.K.F. Shen, and H.R. Tseng, “Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers”, Angewandte Chemie International Edition, 50, 3084-3088 (2011). 27. P.J. Holmes, “The Electrochemistry of Semiconductors”, Journal of The Electrochemical Society, 109, 228C (1962). 28. H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, Journal of The Electrochemical Society, 137, 3626-3632 (1990). 29. I.J. Lee, U. Paik, and J.G. Park, “Solar cell implemented with silicon nanowires on pyramid-texture silicon surface”, Solar Energy, 91, 256-262 (2013). 30. K.Q Peng, Y.J Yan, S.P Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Advanced Materials, 14, 1164-1167 (2002). 31. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Advanced Functional Materials, 16, 387-394 (2006). 32. C.V. Raman, and K.S. Krishnan, “A new type of secondary radiation”, Nature, 121, 501-502 (1928). 33. M. Fleischmann, P.J. Hendra, and Mcquillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chemical Physics Letters, 26, 163-166 (1974) 34. B.N.J. Persson, K. Zhao, and Z. Zhang, “Chemical Contribution to Surface-Enhanced Raman Scattering”, Physical Review Letters, 96, 207401 (2006). 35. L. He, C. Ai, W. Wang, N. Gao, X. Yao, C. Tian, and K. Zhang, “An effective three-dimensional surface-enhanced Raman scattering substrate based on oblique Si nanowire arrays decorated with Ag nanoparticles”, Journal of Materials Science, 51, 3854-3860 (2016). 36. E.C.L. Ru, E. Blackie, M. Meyer, and P.G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study”, The Journal of Physical Chemistry C, 111, 13794-13803 (2007). 37. M.P. Curado, B. Edwards, H.R. Shin, H. Storm, J. Ferlay, M. Heanue and P. Boyle, “Cancer Incidence in Five Continents. Volume IX”, 160, 1-837 (2008). 38. Bureau of Health Promotion Department of Health the Executive Yuan, “Cancer Registry Annual Report, 2007 TAIWAN”. 39. K.M. Shah, and L.S. Young, “Epstein–Barr virus and carcinogenesis: beyond Burkitt’s lymphoma”, Clinical Microbiology and Infection, 15, 982-988 (2009). 40. J.C. Lin, W.Y. Wang, K. Y. Chen, Y.H. Wei, W.M. Liang, J.S. Jan, and R.S. Jiang, “Quantification of Plasma Epstein–Barr Virus DNA in Patients with Advanced Nasopharyngeal Carcinoma”, The New England Journal of Medicine”, 350, 2461-2470 (2004). 41. 國家衛生研究院,“鼻咽癌臨床診療指引”,2011。 42. T. Young, “An Essay on the Cohesion of Fluids”, Philosophical Transactions of the Royal Society, 95, 65-87 (1805). 43. R.N. Wenzal, “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, 28, 988-994 (1936). 44. A.B.D Cassie, and S. Baxter, “Wettability of Porous Surfaces”, Transactions of the Faraday Society, 40, 546-551 (1944). 45. Y. Man, Q. Wang, and W. Kemmner, “Currently Used Markers for CTC Isolation - Advantages, Limitations and Impact on Cancer Prognosis”, Journal of Clinical and Experimental Pathology, 1, 1000102 (2011). 46. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high performance SERS”, Scientific Reports, 6, 25243 (2016). 47. M.Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.M. Adam, “Ultrastable, Uniform, Reproducible, and Highly Sensitive Bimetallic Nanoparticles as Reliable Large Scale SERS Substrates”, The Journal of Physical Chemistry C, 119, 26091-26100 (2015). 48. H.Y. Chen, H.L. Lu, Q.H. Ren, Y. Zhang, X.F. Yang, S.J. Dinga, and D. W. Zhang, “Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer”, Nanoscale, 7, 15142 (2015). 49. I.J. Lee, U. Paik, J.G. Park, “Solar cell implemented with silicon nanowires on pyramid-texture silicon surface”, Solar Energy, 91, 256-262 (2013). 50. Y. Han, X. Yu, D. Wang, and D. Yang, “Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells”, Journal of Nanomaterials, 2013, 716012 (2013). 51. Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, and D. Xiaolong, “Maskless inverted pyramid texturization of silicon”, Scientific Reports, 5, 10843 (2015). 52. T.W. Lin, H.Y. Wu, T.T. Tasi, Y.H. Laia, and H.H. Shen, “Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites”, Physical Chemistry Chemical Physics, 17, 18443 (2015). 53. C.J. Orendorff, A. Gole, T.K. Sau, and C.J. Murphy, “Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence”, Analytical Chemistry, 77, 3261-3266 (2005).
|