• 參考文獻
[1] R. M. C. de Almeida and I. J. R. Baumvol, Reaction-diffusion in high-κ dielectrics on Si, Surface Science Reports. 49, 3 (2003).
[2] Y. Ishikawa and S. Saito, "Ge-on-Si photonic devices for photonic-electronic integration on a Si platform," IEICE Electronics Express, 11, 20142008–20142008 (2014)
[3] Govind P. Agrawal, "Fiber Optic Communication System, " John Wiley, 3rd Edition (2004)
[4] E. obert, " Evacuation dynamics: Empirical results, modeling and applications, " Ph.D. Dissertation, Technischen Universität Wien, (2007)
[5] Karunagaran, B., et al., "Effect of rapid thermal annealing on the properties of PECVD
SiN(x) thin films. Materials Chemistry and Physics, "106 130-133. (2007)
[6] M.J. Stocks, A. Cuevas, A.W. Blakers. "Minority carrier lifetimes of multicrystalline silicon during solar cell processing. Proceedings of the 14th European Photovoltaic Solar Energy Conference, " Barcelona, Spain, 770–773. (1997)
[7] Blakers, A., High-efficiency crystalline silicon solar-cells. Festkorperprobleme-Advances in Solid State Phyics, 30 403-423. (1990)
[8] R. Swanson, S. Beckwith, R. Crane, W. Eades, Y. H. Kwark, R. Sinton, and S. Swirhun, “Point-contact silicon solar cells,” EPRI Rep, vol. 31, pp. 661–664, (1984)
[9] 游鈞傑, 王駿翰, and 簡崇恩, "透明導電膜應用於顯示器上之研究," 實務專題報告, 東南科技大學電子工程系
[10] 李玉華, "透明導電膜及其應用," 科儀新知, 12, 94–102 (1990)[11] Lei Hao, X. D. "Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates." ELSEVIER: 3504–3508. (2007)
[12] H.Koseoglu, F.Turkoglu, M. Kurt, and Mutlu D. Yaman, “Improvement of optical and electrical properties of ITO thin films by electro-annealing,” Vacuum, 120, 8-13 (2015)
[13] M. Bivour, "Improving the a-Si:H(p) Rear Emitter Contact of n-Type Silicon Solar Cells, " SiliconPV conference, (2012)
[14] https://embedded-note.hackpad.com/ep/pad/static/0KF0hrjt78j
[15] http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun.html
[16] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, New York, (2007)
[17] http://ecee.colorado.edu/~bart/book/book/chapter4/ch4_2.htm#fig4_2_4
[18] B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, IEEE Transactions on 27, 606 (1980).
[19] http://www.xny365.com/news/article-39148.html
[20] F. Feldmann, M. Bivour,C. Reichel, M. Hermle,Stefan W. GlunzGlunz "Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics," Solar Energy Materials & Solar Cells, 120, 270-274 (2014)
[21] Y. Tao, V. Upadhyaya , Y. Y. Huang , C. W. Chen , K. Jones , A. Rohatgi "Carrier Selective Tunnel Oxide Passivated Contact enabling 21.4% Efficient Large-area N-type Silicon Solar Cells," 43rd IEEE Photovoltaic Specialist Conference, 7750103 (2016)
[22] S. Imai, S. Mizushima, Asuha, W.-B. Kim, H. Kobayashi "Properties of thick SiO2 /Si structure formed at 120C by use of two-step nitric acid oxidation method," Applied Surface Science, 254, 8054–8058 (2008)
[23] B. E. Deal, "Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, " IEEE Transactions on 27, 606 (1980)
[24] D. K. "Schroder, Semiconductor material and device characterization, " 3rd ed Wiley, New Jersey, (2006).
[25] A.Koukab, A. Bath, and E. Losson, "An improved high frequency C-V method for interface state analysis on MIS structures, " Solid-State Electronics, vol. 41 p.635-641 (1997)
[26] L.M. Terman, "Solid-State Electronics," vol. 5, p.284 (1962)
[27] E. H. Nicollian, J. R.Brews, MOS physics and technology, Wiley, (1982).
[28] D. A. Neamen, Semiconductor Physics and Devices: Basic principles, 3rd ed McGraw-Hill, New York, (2003).
[29] http://ecee.colorado.edu/~bart/book/book/toc6.htm
[30] F. Feldmann ,M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, "A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF>82%." in 28th European PV solar energy conference and exhibitionParis, France. (2013)
[31] F. Feldmann ,M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, " Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics" Solar Energy Materials & Solar Cells 120 270–274, (2014)
[32] F. Feldmann ,M. Simon, M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, " Efficient carrier-selective p- and n-contacts for Si solar cells" Solar Energy Materials & Solar Cells 131 100–104, (2014)
[33] D. L. Young, W. Nemeth, S. Grover, A. Norman, H.C. Yuan, B. G. Lee, V. LaSalvia, P. Stradins, "Carrier selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides, " Energy Procedia, 55 733–740 ( 2014 )
[34] K.M. Gad, D.Vossing, P. Balamou, D. Hiller, B. Stegemann, H. Angermann, M. Kasemann, "Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by thermal oxidation, " Applied Surface Science, 353 1269–1276 (2015)
[35] B. Stegemann, K.M. Gad, P. Balamou, D. Sixtensson, D.Vossing, M. Kasemann, H. Angermann, "Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities, " Applied Surface Science, 395 78–85 (2017)
[36] F.J. Grunthaner, P.J. Grunthaner, "Chemical and electronic structure of the SiO2/Siinterface, " Mater.Sci.Rep. 1 p65. (1986)
[37] F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, G. Hollinger, "Microscopic structure of the SiO2/Si interface, " Phys. Rev. B 38 6084–6096, (1988)
[38] K. Hirose, H. Nohira, K. Azuma, T. Hattori, "Photoelectron spectroscopy studies of SiO2/Si interfaces, " Progr. Surf. Sci 82 3. (2007)
[39] K.L. Brower, "Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface, " Phys. Rev. B 38 9657–9666. (1988)
[40] ] B.E. Deal, A.S. "Grove, General relationship for the thermal oxidation of silicon, " Applied Surface Science 36 3770. (1965)
[41] T. Hattori, "Chemical structures of the SiO2Si interface, " Crit. Rev. Solid State Material. Science. 20 339–382. (1995)
[42] F.S Becker, In Reduced Thermal Processing for VLSI., Ed. R. A. Levy, NATO, ASI, K-87, 86-84, (1990).
[43] F. S. Becker, D. Pawlik, H. Anzinger, A. Spitzer, J. Vac. Sci. Technol., B. 5, 155, (1987).
[44] O. Buiu, G. Kennedy, M. Gartner, S. Taylor, "Structural analysis of silicon dioxide and silicon oxynitride films produced using an oxygen plasma, " IEEE Trans. Plasma Sci. 26 1700–1712. (1998)
[45] D.W. Hess, Plasma-assisted oxidation, anodization, and nitridation of silicon, IBM J. Res. Dev. 43127–145, (1999)
[46] S.K. Sharma, B.C. Chakravarty, S.N. Singh, B.K. Das, Oxidation of silicon in RF induced oxygen plasma, J. Mater. Sci. Lett. 9982–984, (1990)
[47] M.A. Szymanski, A.M. Stoneham, A. Shluger, The different roles of charged and neutral atomic and molecular oxidising species in silicon oxidation from ab initio calculations, Solid State Electron. 45 1233, (2001)
[48] K. Fujino, Y. Nishimoto, N. Tokumasu and K. Maeda, “Low Temperature, Atmospheric Pressure CVD Using Hexamethyldisiloxane and Ozone,” J. Electrochem. Soc., 139, 2282 (1992).
[49] I. Avigal, Solid State Technol., 26 (10) , 217 (1983).
[50] J.E. Tong and K. Schertenluib, and Carpio, R. A., Solid State Technol., 27(1), 161 (1984).
[51] J. Batey and E. Tierney, J. Appl. Phy., 60, 3136 (1986).
[52] 蔡淑儀, "利用感應耦合電漿化學氣相法在極低溫下沉積SiO2薄膜以製備 MIS 結構," 碩士論文, 國立成功大學微機電系統工程所, 2006[53] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147, 1481-1486 (2000).
[54] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147, 1481-1486 (2000).
[55] Mizushima, S., et al., "Nitric acid method for fabrication of gate oxides in TFT. " Applied Surface Science, 254(12): p. 3685-3689. (2008)
[56] Asuha, et al., "Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation. " Journal of the Electrochemical Society, 151(12): p. G824-G828 (2004)
[57] Kobayashi, H., et al., " Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. " Journal of Applied Physics, 94(11): p. 7328-7335. (2003)
[58] Asuha, et al., "Nitric acid oxidation of silicon at similar to 120 ℃ to form 3.5-nm 53 SiO2/Si structure with good electrical characteristics. " Applied Physics Letters, 85(17): p. 3783-3785. (2004)
[59] Pincik, E., et al., "On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation. " Applied Surface Science, 253(16): p. 6697-6715. (2007)
[60] X. W. Sun, L. D. Wang and H. S. Kwok, “Improved ITO Thin Films with a Thin ZnO Buffer Layer by Sputtering”, Thin Solid Films, 360 75. (2000)
[61] K. Tominaga, T. Ueda, T. Ao, M. kataka and I. Mori, “ITO Films Prepared by Facing Target Sputtering System”, Thin Solid Films, 281-282194. (1996)
[62] S. Honda, M. Watamori and K. "The effects of oxygen content on electrical and optical properties of indium tin oxide films fabricated by reactive sputtering Oura, " Thin Solid Films 281-282 206, (1996)
[63] B. Karunagaran, S.J. Chung, S. Velumani, E.-K. Suh, " Effect of rapid thermal annealing on the properties of PECVD SiNx thin films, " Materials Chemistry and Physics 106 130–133, (2007)
[64] R. Hezel1, K. Blumenstock, R. Schörner, "Interface States and Fixed Charges in MNOS Structures with APCVD and Plasma Silicon Nitride, " Solid State Science and Technology. 131 1679–1683, (1984)
[65] M. Bivour, S. Schröer, K.-U. Ritzau, M. Hermle, S. W. Glunz, " Influence of Interfacial ITO Doping on a-Si:H(p) / ITO(n) Contact Properties for Silicon Heterojunction Solar Cells, " 27th EU PVSEC Conference, (2012)