跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江彥龍
研究生(外文):Yan-Long Jiang
論文名稱:微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
論文名稱(外文):The evolution of ZrCu precipitation and mechanical properties affected by the trace addition of Ta particles in Zr-Cu-Al-Co bulk metallic glass
指導教授:鄭憲清
指導教授(外文):Shian-Ching Jang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:鋯基非晶質合金ZrCu B2 相內析出
外文關鍵詞:Zr-based amorphous alloyZrCu B2 phaseIn situ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在某些鋯基塊狀非晶質合金中,可以自基地裡析出ZrCu B2相,而此ZrCu B2相在受到剪切帶的應力時會產生相變化而吸收剪切帶的能量並有效地阻止其傳播,進而阻止材料被破壞而大幅提升非晶質合金的塑性。然而Zr48Cu47.5Al4Co0.5合金於鑄造過程中,其ZrCu B2相之析出尺寸無法有效控制,常會發現大區塊團聚及不均勻分佈之析出相。所以本研究利用凝固製程中接種之概念,在Zr48Cu47.5Al4Co0.5合金中添加微米等級的鉭金屬顆粒(5 ~ 30 µm),利用鉭之高熔點及與基材不互熔的特性,可將鉭顆粒均勻地散布在基材中成為ZrCu B2相的析出成核點,使ZrCu B2析出相散布均勻,再搭配不同冷卻銅模溫度來控制ZrCu B2相的尺寸,藉此更有效地提升其塑性。
Zr48Cu47.5Al4Co0.5外添加 0 ~ 0.75 vol.% 鉭顆粒之合金在冷卻銅模溫度-30 °C條件下,其XRD圖皆具有非晶質結構之基地及ZrCu B2析出相的特徵峰,但其中添加0.75 vol.% 鉭顆粒之合金在冷卻銅模溫度高於-20 °C的條件下則結晶。在OM的觀察下可發現,Zr48Cu47.5Al4Co0.5加入鉭顆粒後使ZrCu B2析出相散布更均勻,同時可發現鉭顆粒被ZrCu B2相包覆於中心處;隨著鉭顆粒的增加提供了更多的成核點而析出更多的ZrCu B2相。然而,添加0.75 vol.% 鉭顆粒之合金隨著冷卻銅模溫度的上升而析出大量的ZrCu B2相並產生團聚現象。DSC的結果顯示,隨著鉭顆粒的添加及冷卻銅模溫度的上升其結晶放熱峰值有下降的趨勢,代表合金基地非晶相體積分率下降及ZrCu B2相體積分率提高。雖然添加鉭金屬顆粒對於Zr48Cu47.5Al4Co0.5合金的硬度值並沒有影響,基材硬值度約為515 ± 5 Hv,而ZrCu B2相硬度約為344 ± 2 Hv,但於冷卻銅模溫度為-30 °C的條件下,添加0.75 vol.% 鉭顆粒之鋯基非晶質合金棒材的機械性質有非常顯著的提升,其降伏強度為1750 MPa、破裂強度為1890 MPa、塑性變形量提升到14 %,相較其基材的塑性變形量7.5 %,增加了6.5 %。
In some Zr-based bulk metallic glass composites (BMGCs), the ZrCu B2 phase can be precipitated from the matrix. When the ZrCu B2 phase subjected to the stress from the shear banding, it will absorb the energy of shear band and transform into ZrCu B19' phase, and so as to improve the plasticity of Zr-based BMG. However, the particle size and distribution of ZrCu B2 phase in Zr48Cu47.5Al4Co0.5 BMG cannot be well controlled in general casting. Large agglomerated and inhomogeneous distributed ZrCu B2 phase were usually found in the Zr48Cu47.5Al4Co0.5 BMG samples. Therefore, the concept of inoculation in conventional solidification process is applied in this study. The Ta particles (size of 5–30 µm) with 0 ~ 1.0 vol.% were added into Zr48Cu47.5Al4Co0.5 BMG matrix as the inoculant. By using the ultrahigh melting point of tantalum and immiscible with Zr-base substrate, the Ta particles can be uniformly dispersed in the Zr-based alloy melt as the nucleation sites for precipitating ZrCu B2 phase, and form a homogeneously distributed ZrCu B2 phase in the matrix of Zr48Cu47.5Al4Co0.5 BMG. Then, the different cooling rates of solidification process are further used to control the particle size of ZrCu B2 phase.
Based on the results of XRD analysis, Zr48Cu47.5Al4Co0.5 alloy rods with 0 ~ 0.75 vol.% Ta particle additions made by the copper mold at the temperature of -30°C present amorphous structure co-existing with ZrCu B2 phase. However, when the temperature of copper mold increases to higher than -20 °C, the sample with 0.75 vol.% Ta particle additions will be totally crystallized. After adding Ta particles, the precipitates of ZrCu B2 phase in the Zr48Cu47.5Al4Co0.5 alloy matrix exhibit more even distribution and round shape. But when decrease the cooling rate of solidification, the large amount of ZrCu B2 precipitates will agglomerate and form a large particle. According to the results of DSC analysis, with increasing the amount of Ta particles and decreasing the cooling rate of solidification, the enthalpy value of crystallization exothermic peak decreases, which means that the volume fraction of amorphous matrix decreased and the precipitate of ZrCu B2 phase increased.
The results of compression test reveal that the sample of Zr48Cu47.5Al4Co0.5 added with 0.75 vol.% Ta particle performs the highest mechanical properties, 1750 MPa yield stress, 1890 MPa fracture stress, and 14 % plastic strain. This is 6.5 % improvement of plastic strain in comparison with its base alloy.
摘要 I
Abstract III
致謝 V
總目錄 VI
表目錄 IX
圖目錄 X
第一章、研究背景 1
1-1 前言 1
1-2 研究動機 2
第二章、理論基礎 5
2-1 塊狀非晶質合金之發展 5
2-2 非晶質合金之種類 6
2-3 實驗歸納法則 7
2-4 非晶質合金製程介紹 8
2-5 微量元素添加之影響 11
2-6 塊狀非晶質合金複材 12
2-7 非晶質合金之性質 14
2-7-1 熱力學性質 14

2-7-2 機械性質 18
2-7-3 耐腐蝕性 19
2-7-4 抗菌性 19
2-7-5 磁性值 20
2-7-6 相變誘發塑性現象 20
第三章、實驗步驟與方法 29
3-1 實驗目的 29
3-2 合金製備 30
3-2-1 合金配置 30
3-2-2 合金熔煉 30
3-2-3 非晶質棒材製作 31
3-3 微結構分析 31
3-3-1 光學顯微鏡(OM) 31
3-3-2 X 光繞射分析儀(XRD) 32
3-3-3 掃描式電子顯微鏡(SEM) 32
3-3-4 能量射散光譜儀(EDS) 32
3-3-5 穿透式電子顯微鏡(TEM) 33
3-4 熱性質分析 33
3-4-1 熱示差掃描熱分析儀(DSC) 33

3-5 機械性質分析 34
3-5-1 維式硬度分析 34
3-5-2 壓縮測試 34
第四章、結果與討論 45
4-1 基材添加不同體積百分比鉭顆粒之棒材 45
4-1-1 X 光繞射分析 45
4-1-2 ZrCu B2 相的大小與分布情形 46
4-1-3 熱性質分析 47
4-1-4 SEM 分析 48
4-1-5 機械性質分析 49
4-1-6 TEM 分析 52
4-2 基材外添加 075 體積百分比鉭顆粒在不同銅模冷卻溫度下製備之棒材
53
4-2-1 X 光繞射分析 53
4-2-2 ZrCu B2 相的大小與分佈情形 54
4-2-3 熱性質分析 55
4-2-4 機械性質分析 55
第五章、結論 80
第六章、參考文獻 82
[1]. A.C. Lund and C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95 , 2004, pp.4815-4822.
[2]. D.R. Uhlmann, “A kinetic treatment of glass formation”, Journal of Non-Crystalline Solids, vol. 7 , 1972, pp.337-348.
[3]. BURTON, Amorphous Metallic Alloys 1st edition, Butterworths-Heinemann, London, 1983
[4]. Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol. 50, 2002, pp.3501-3512.
[5]. X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of applied physics, vol. 101, 2007, pp.086108.
[6]. W.L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, vol. 225-227, 1996, pp.35-50.
[7]. A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys”, Applied Physics Letters, vol. 83, 1998, pp.1967-1974.
[8]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 2001
[9]. B. Guan, X. Shi, Z. Dan, G. Xie, M. Niinomi, F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses”, Intermetallics, vol. 72, 2016, pp.69-75.
[10]. T.C. Chieh, J. Chu, C.T. Liu and J.K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Materials Letters, vol. 57, 2003, pp.3022-3025.
[11]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6M HCl solution”, Materials Science and Engineering, vol. 318, 2001, pp.77-86.
[12]. W. Zhou, W.P. Weng, J.X. Hou, “Glass-forming Ability and Corrosion Resistance of Zr-Cu-Al-Co Bulk Metallic Glass”, Journal of Materials Science & Technology”, vol. 32, 2016, pp.349-354.
[13]. H.F. Tian, J.W. Qiaoa, H.J. Yang, Y.S. Wang, P.K. Liaw, A.D. Lan, “The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media”, Applied Surface Science, vol. 363, 2016, pp.37-43.
[14]. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr. and J.L. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics, vol. 10, 2002, pp.1157-1162.
[15]. C.A.C. Sousa and C.S. Kiminami, “Crytallization and corrosion resistance of amorphous FeCuNbSiB”, Journal of Non-Crystalline Solids, vol. 219, 1997, pp.155-159.
[16]. M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, vol. 117, 2001, pp.374-380.
[17]. J. Lee, M.L. Liou, J.G. Duh, “The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application”, Surface and Coatings Technology, vol. 310, 2017, pp.214-222
[18]. C.N. Kuo, J.C. Huang, J.B. Li, J.S.C. Jang, C.H. Lin, T.G. Nieh, “Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys”, Journal of Alloys and Compounds, vol. 590, 2014, pp.453-458.
[19]. J.S.C. Jang, J.Y. Ciou, J.C. Huang and X.H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, vol. 92, 2008, pp.11930.
[20]. Y. Wu, Y. Xiao, G. Chen, C.T. Liu and Z. Lu, “Bulk Metallic Glass Composites with Transformatiom Mediated Work-Hardening and Ductility”, Advanced Materials, vol. 22, 2010, pp.2770-2773.
[21]. A. Brenner, Electrodeposition of Alloys, Academic Press, 1963
[22]. W. Klement, R.H. Willens, and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys,” Nature, vol. 187, 1960, pp.869-870.
[23]. H.S. Chen and C.E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp.1237-1238.
[24]. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Applied Physics Letters, vol. 43, 1983, pp.1017-1019.
[25]. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions JIM, vol. 32, 1991, pp.609-616.
[26]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method”, Materials Transactions JIM, vol. 33, 1992, pp.937-945.
[27]. M.K. Miller, P. Liaw, “Bulk Metallic Glasses-An Overview”, Springer , 2008.
[28]. A. Inoue, N. Nishiyama, H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183.
[29]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol. 226-228, 1997, pp.357-363.
[30]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[31]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[32]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[33]. R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles 3rd Edition, PWS-KENT Publishing Company, Boston, 1994
[34]. D.R. Gaskell, Introduction to the Thermodynamics of Materials 4th Edition, Taylor & Francis, US, 2009
[35]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, JIM, vol. 36, 1995, pp.866-875.
[36]. K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill, 1969
[37]. Z.P. Lu, C.T. Liu, “Role of minor alloying additions in formationof bulk metallic glasses: A Review”, Journal of Material Science, vol. 39, 2004 pp.3965-3974.
[38]. C.C. Hays, C.P. Kim, W.L. Johnson, “Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions”, Materials Science and Engineering, vol. 304-306, pp.650-655.
[39]. J.S.C. Jang, S.R. Jian, D.J. Pan, Y.H. Wu, J.C. Huang, T.G. Nieh, “Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles”, Intermetallics, vol. 18, pp.560-564.
[40]. C.N. Kuo, J.C. Huang, X.H. Du, X.J. Liu, T.G. Nieh, “Comparison of mechanical response in CuZrAl–V and CuZrAl–Co bulk metallic glass composites”, Journal of Alloys and Compounds, vol. 586, pp.S14-S19.
[41]. J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, “Dispersion toughening of Mg-based bulk metallic glass reinforced with porous Mo particles”, Intermetallics, vol. 18, pp.451-458.
[42]. J.B. Li, J.S.C. Jang, S.R. Jian, K.W. Chen, J.F. Lin, J.C. Huang, “Plasticity improvement of ZrCu-based bulk metallic glass by ex situ dispersed Ta particles”, Materials Science and Engineering A, vol. 528, pp.8244-8248.
[43]. 陳世瑋,“不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2 相分布及其機械性質影響之研究”,國立中央大學機械工程研究所碩士論文,2014。
[44]. A.Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp.279-306.
[45]. J.S.C. Jang, I.H. Wang, L.J. Chang, G.J. Chen, T.H. Hung, J.C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Materials Science and Engineering A, vol. 449-451, 2007, pp.511-516.
[46]. T.A. Waniuk, J. Schroers and W.L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, vol. 78, 2001, pp.1213-1215.
[47]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems”, Acta Materialia, vol. 49, 2001, pp.2645-2652.
[48]. A. Inoue, “Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Materials, vol. 48, 2000, pp.279-306.
[49]. T.D. Shen and R.B. Schwarz, “Bulk amorphous Pd-Ni-Fe-P alloys: preparation and characterization”, Journal of Materials Research, vol. 14, 1999, pp.2107-2115.
[50]. T.D. Shen, R.B. Schwarz and J.D. Thompson, “Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd-Ni-Fe-P alloys”, Applied Physics Letters, vol. 85, 1999, pp.4110-4120.
[51]. A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai and T. Masumoto, “Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M=Cu or Ag) amorphous alloys”, Materials Transactions JIM, vol. 35, 1994, pp.95-102.
[52]. 鄭振東,非晶質金屬漫談,建宏出版社,1990
[53]. A.S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgaica, vol. 27, 1979, pp.47-58.
[54]. C.L. Qiu, L. Liu, M. Sun, S.M. Zhang, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research, vol. 75, 2005, pp.950-956.
[55]. A. Inoue, B.L. Shen, A.R. Yavari, A.L. Greer, “Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems”, Journal of Materials Research, vol. 18, 2003, pp.1478-1492.
[56]. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, “A new view on transformation induced plasticity (TRIP)”, International Journal of Plasticity, vol. 16, 2000, pp.723-748.
[57]. WorldAutoSteel, Transformation-Induced Plasticity (TRIP) Steel.
[58]. C.P. Frick, T.W. Lang, K. Spark, K. Gall, “Stress-induced martensitic transformations and shape memory at nanometer scales”, Acta Materialia, vol. 54, 2006, pp.2223-2234.
[59]. C.J. Li, J. Tana, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, J. Eckert, “On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy”, Intermetallics, vol. 35, 2013, pp.116-119.
[60]. B.A. Sun, K.K. Song, S. Pauly, P. Gargarella, J. Yi, G. Wang, C.T. Liu, J. Eckert, Y. Yang, “ransformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding”, International Journal of Plasticity, vol. 85, 2016, pp.34-51.
[61]. J. W. Seo and D. Schryvers, “TEM investigation of the microstructure and defects of CuZr martensite. Part Ι:Morphology and twin systems ”, Acta material, vol. 4, 1998, pp.1165-1175.
[62]. B.Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, “Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility ”, Adv. Mater, vol. 22, 2010, pp.2770-2773.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top