跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪煜柔
研究生(外文):Yu-Jou Hung
論文名稱:錫摻雜之高錳矽化物之製備與熱電性質分析
論文名稱(外文):Preparation and Analysis of Thermoelectric Properties of Sn-Doped High Manganese Silicide
指導教授:李勝偉洪健龍
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:高錳矽化物熱電性質不匹配相
外文關鍵詞:Higher manganese silicideThermoelectric propertiesTinIncommensurate phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
高錳矽化物(HMS)是極具潛力發展為中溫型發電之P型熱電材料。高錳矽化物為一種不匹配相(Incommensurate phase),目前發現的有四種高錳矽化物之相,分別為Mn4Si7、Mn11Si19、Mn15Si26與Mn27Si47,這四種相皆為螺旋階梯狀排列的晶體結構。
高錳矽化物之熱電性質通常會藉由摻雜或固溶其他元素改善。本研究採用錫摻雜至高錳矽化物中,使用電弧熔煉與火花電漿燒結的方式,製備多晶摻雜錫之高錳矽化物塊材,並且研究其相組成與微結構。我們選用的錫摻雜比例為0.1at%、0.5at%、1at%和1.5at%。之後對經火花電漿燒結的高錳矽化物塊材進行熱電性質量測,量測的溫度範圍介於323K~773K之間;發現在摻雜量為0.1at%的時候,會有最低的晶格導熱率,並且有最高的ZT值。
Higher manganese silicide (HMS) is considered to be a promising p-type thermoelectric material for use in intermediate-temperature power generation. It is well known that HMS exist as several incommensurable phases such as Mn4Si7, Mn11Si19, Mn15Si26, Mn27Si47, and all of these compounds are Nowotny chimney phases exhibiting tetragonal crystal structure.

Thermoelectric performance is improved through compositional optimization by doping or substitution. In this work, we prepared polycrytstalline HMS with Sn additions by arc melting and subsequent spark plasma sintering (SPS). The phases, composition, and microstructures of the Sn-doped polycrystalline HMS bulk were investigated. In this study, we select doped-Sn ratio of 0.1at%, 0.5 at%, 1 at%, and 1.5at%. After SPS, we measured the thermoelectric properties of sintered bulk sample from 323K to 773K. We found that the thermal conductivity was significantly improved when the Sn was 0.1at%. The HMS with Sn has the best the ZT is 0.1at%.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
1-1 前言 1
1-2 研究目的 2
第二章、文獻回顧 5
2-1 熱電效應概述 5
2-1-1 Seebeck 效應 6
2-1-2 Peltier 效應 7
2-1-3 Thomson 效應 8
2-2 導電率 9
2-3 熱傳導率 10
2-4 Wiedemann-Franz 定律 11
2-5 熱電優值 12
2-6 高錳矽化物(Higher manganese silicide)簡介 12
2-6-1 高錳矽化物晶體結構 13
2-6-2 高錳矽化物特性 14
2-7 高錳矽化物之熱電性質改良 15
第三章、實驗方法與實驗設備 21
3-1 高錳矽化物塊材製備 21
3-1-1 起始原料 21
3-1-2 電弧熔煉(Arc melting) 21
3-1-3 研磨與過篩 22
3-1-4 火花電漿燒結成型(Spark plasma sintering) 23
3-2 材料結構分析 24
3-2-1 X光繞射分析(XRD) 24
3-2-2 掃描式電子顯微鏡分析(SEM) 24
3-2-3 穿透式電子顯微鏡分析(TEM) 25
3-3 材料熱電性質分析 26
3-3-1 試片製備 26
3-3-2 席貝克係數與導電率量測 26
3-3-2-1 熱電性席貝克係數與半導體化合物材料導電率變溫量測系統(ZEM 3) 26
3-3-2-2 霍爾效應量測 27
3-3-3 熱傳導率量測 27
3-3-3-1 高溫示差掃描熱分析儀(DSC) 27
3-3-3-2 雷射閃光法熱傳導分析儀 (LFA) 28
3-3-3-3 阿基米德法(Archimedes method) 29
第四章、實驗結果與討論 34
4-1材料基本性質分析 34 4-1-1 XRD分析 34
4-1-2 SEM分析 35
4-1-3 TEM分析 36
4-2 熱電性質分析 37
4-2-1 導電率 37
4-2-2 Seebeck係數 39
4-2-3 導熱率 39
4-2-4 ZT值 40
第五章、結論 50
參考文獻 51
[1] Ssennoga Twaha, Jie Zhu, Yuying Yan, and Bo Li., “A comprehensive review of thermoelectric technology : materials, applications, modelling and performance improvement”, Renewable and sustainable energy reviews, 65, pp.698-726, 2016.

[2] Fitriani, R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, and R. Saidur, “A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery”, Renewable and sustainable energy reviews, 64, pp.635-659, 2016.

[3] Yim WM, and Rosi FD, “Compound tellurides and their alloys for Peltier cooling-a review”, Solid State Electron, 15, pp.1121-1140, 1972.

[4] Noda Y, Orihashi M, and Nishida IA, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, 1998.

[5] Harringa JL, and Cook BA. “Application of hot isostatic pressing for consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, 1999.

[6] I. Kawasumi, M. Sakata, I. Nishida, and K. Matsumoto, “Crystal growth of manganese silicide, MnSi1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, 16, pp.355-366.1981.

[7] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, 2014.

[8] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, 2008.

[9] Terry M. Tritt, “Thermoelectric phenomena materials, and applications”, Annu. Rev. Mater. Res., 41, pp.433-448, 2011.

[10] 朱旭山,「熱電材料與元件之原理及應用」,電子與材料雜誌,第22期,pp.78-89, 2004。

[11] Rowe, David Michael, ed. Thermoelectrics handbook : macro to nano, CRC press, 2005.

[12] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, 2007.

[13] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, 2009.

[14] Ali Shakouri, “Recent developments in semiconductor thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, 2011.

[15] Rowe DM, ed., Handbook of thermoelectrics, Boca Raton: CRC, 1995.

[16] Yuzuru Miyazaki, Dai Igarashi, Kei Hayashi, and Tsuyoshi Kajitani, “Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ(γ~1.74)”, Physical Review, B, 78, 214104, 2008.

[17] J. Higgins, A. Schmitt, Llia. A. Guzei, and Song Jin, “Higher manganese silicide nanowires of Nowotny chimney ladder phase”, J. Am. Chem. Soc., 130, pp.16086-16094, 2008.

[18] Massalski, T. B., Okamoto, H., Subramanian, P. R., Kacprzak, L., and Scott, W. W., Binary alloy phase diagrams, American Society for Metals Metals Park, OH, 1986.


[19] R. De Ridder, G. Van Tendeloo, and S. Amelinckx, “Electron microscopic study of the chimney ladder structures MnSi2-x and MoGe2-x”, phys. stat. sol., 88, pp.383-393, 1976.

[20] U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, “Magnetic properties of single crystalline Mn4Si7”, J. Alloys Compd., 361, pp.13-18, 2003.

[21] O. Schwomma, H. Nowotny, and A. Wittman, Monatsch. Chem., 94, pp.681, 1963.

[22] H. W. Knott, M. H. Mueller, and L. Heaton, “The crystal structure of Mn15Si26”, Acta Crystallogr, 23, pp.549, 1967.

[23] G. Zwilling, and H. Nowotny, Monatsch. Chem., 104, pp.668-675, 1973.

[24] D. B. Migas, V. L. Shaposhnikov, A. B. Filonov, and V. E. Borisenko, “Ab initio study of the band structures of different phases of higher manganese silicides”, PHYSICAL REVIEW B, 77, 075205, 2008.

[25] Ikuto Aoyama, Mikhail I. Fedorov, Vladimir K. Zaitsev, Fedor Yu. Solomkin, Ivan S. Eremin, Aleksandr Yu. Samunin, Mika Mukoujima, Seijiro Sano, and Toshihide Tsuji, “Effects of Ge Doping on Micromorphology of MnSi in MnSi∼1.7 and on Their Thermoelectric Transport Properties”, Japanese journal of applied physics, vol. 44, No. 12, pp.8562-8570, 2005.

[26] Kawasumi I, Sakata M, Nishida I, and Masumoto K., “Crystal growth of manganese silicide, MnSi~1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, pp.355-366, 1980.

[27] Nishida I, Masumoto K, Kawasumi I, and Sakata M., “Striations and crystal structures of the matrix in the MnSi-Si alloy system”, Journal of the less–common metals, 71, pp.293-301, 1980.

[28] A. Neubauer, C. Pfleiderer, R. Ritz, P.G. Niklowitz, and P. Böni, “Hall effect and magnetoresistance in MnSi”, Physica B, 404, pp.3163-3166, 2009.

[29] A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T.Dasgupta, C. stiewe, R. hassdorf, and E. Mueller, “Improved thermoelectric performance of higher manganese silicides with Ge additions”, Journal of electronic materials, Vol. 39, No. 9, pp.2002-2007, 2010.

[30] Wenhui Luo, Han Li, Fan Fu, Wen Hao, and Xinfeng Tang, “Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method”, Journal of electronic materials, Vol. 40, No. 5, pp.1233-1236, 2011.

[31] V. Ponnambalam, Donald T. Morelli, S. Bhattacharya, and Terry M. Tritt, “The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75)”, Journal of Alloys and Compounds, 580, pp. 598-603, 2013.

[32] V. Ponnambalam, and Donald T. Morelli, “Effect of Cr and Fe substitution on the transport properties of the Nowotny Chimney–Ladder MnSiδ (1.73< δ< 1.75) compounds”, Journal of electronic materials, Vol. 41, No. 6, pp.1389-1394, 2012.

[33] M. Saleemi, A. Famengo, S. Fiamen, S. Boldrini, S. Battiston, M. Johnsson, M.Muhammed, and M.S. Toprak, “Thermoelectric performance of higher manganese silicide nanocomposites”, Journal of Alloys and Compounds, 619, pp.31-37, 2015.

[34] Akio Yamamoto, Swapnil Ghodke, Hidetoshi Miyazaki, Manabu Inukai, Yoichi Nishino, Masaharu Matsunami, and Tsunehiro Takeuchi, “Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides”, Japanese Journal of Applied Physics, 55, 020301, 2016.

[35] Xi Chen, Jianshi Zhou, John B. Goodenough, and Li Shi, “Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase”, J. Mater. Chem. C, 3, pp.10500-10508, 2015.

[36] A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C.Stiewe, R. Hassdorf, and E. Mueller, “Microstructure and thermoelectric properties of SiGe-added higher manganese silicides”, Materials Chemistry and Physics, 124, pp.1001-1005, 2010.

[37] A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, “Composites of Higher Manganese Silicides and Nanostructured Secondary Phases and Their Thermoelectric Properties”, Journal of electronic materials, Vol. 38, No. 7, pp.1072-1077, 2009.

[38] X. Chen, S. N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J. B. Goodenough, J. Zhou, and L. Shi, “Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides”, Adv. Energy Mater., 4, 1400452, 2014.

[39] I. Itoh, and M. Yamada, “Synthesis thermoelectric manganese silicide by machnical alloying and pulse discharge sintering”, Journal of electronic materials, Vol. 38, pp.925-929, 2009.

[40] Z.M. Wang, Y. D. Wu, and Y. J. He, “Seebeck coefficient of Mn-Si materials prepared by spark plasma sintering”, International journal of modern physics B, 18, pp.2279-2286, 2004.

[41] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜誌,287期,2010年11月。

[42] 林麗娟,「X光繞射原理及其應用」,工業材料雜誌,86期,100-109頁,1994年2月。

[43] D. A. Ditmars, S. Ishihara, S. S. Chang, and G. Bernstein, “Enthalpy and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163, March-April 1982.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top