|
1. Bleda-Martínez, M., et al., Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon, 2005. 43(13): p. 2677-2684. 2. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539. 3. Simon, P., et al., Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854. 4. Çeçen, F., et al., Activated carbon. Kirk-othmer encyclopedia of chemical technology, 1992. 5. Conway, B.E., et al., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media. 6. Dastgheib, S.A., et al., Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004. 42(3): p. 547-557. 7. Chen, J.P., et al., Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 2003. 41(10): p. 1979-1986. 8. Evans, M., et al., The production of chemically-activated carbon. Carbon, 1999. 37(2): p. 269-274. 9. Otowa, T., et al., Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon, 1997. 35(9): p. 1315-1319. 10. Yang, R.T., et al., Adsorbents: fundamentals and applications. 2003: John Wiley & Sons. 11. Biniak, S., et al., Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. Chemistry and physics of carbon, 2001: p. 125-226. 12. Puri, B., et al., Chemistry and physics of carbon. Chemistry and Physics of Carbon. Marcel Dekker, New York, 1970: p. 191-282. 13. Garten, V., et al., A new interpretation of the acidic and basic structures in carbons. II. The chromene-carbonium ion couple in carbon. Australian Journal of Chemistry, 1957. 10(3): p. 309-328. 14. Shafeeyan, M.S., et al., A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010. 89(2): p. 143-151. 15. Kaneko, K., et al., Microporosity and adsorption characteristics against NO, SO2, and NH3 of pitch-based activated carbon fibers. Carbon, 1988. 26(3): p. 327-332. 16. Qu, D., et al., Studies of the activated carbons used in double-layer supercapacitors. Journal of power sources, 2002. 109(2): p. 403-411. 17. Yoshida, A., et al., Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon, 1990. 28(5): p. 611-615. 18. Morimoto, T., et al., Electric double-layer capacitor using organic electrolyte. Journal of Power Sources, 1996. 60(2): p. 239-247. 19. Hsieh, C.-T., et al., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 2002. 40(5): p. 667-674. 20. Ishimoto, S., et al., Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors. Journal of the Electrochemical Society, 2009. 156(7): p. A563-A571. 21. Azaïs, P., et al., Causes of supercapacitors ageing in organic electrolyte. Journal of power sources, 2007. 171(2): p. 1046-1053. 22. Alkire, R.C., et al., Electrochemistry of Carbon Electrodes. Vol. 16. 2015: John Wiley & Sons. 23. Menéndez, J.A., et al., On the modification and characterization of chemical surface properties of activated carbon: in the search of carbons with stable basic properties. Langmuir, 1996. 12(18): p. 4404-4410. 24. Pietrzak, R., et al., XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel, 2009. 88(10): p. 1871-1877. 25. Menendez, J., et al., On the difference between the isoelectric point and the point of zero charge of carbons. Carbon, 1995. 33(11): p. 1655-1657. 26. Shin, S., et al., A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 1997. 35(12): p. 1739-1743. 27. Figueiredo, J., et al., Modification of the surface chemistry of activated carbons. carbon, 1999. 37(9): p. 1379-1389. 28. Ju, Y.T., et al., The reduction effect of oxygen functional groups in activated carbon for supercapacitor electrode. J. Ceram. Process. Res., 2012. 13: p. S159-S162. 29. Moreno-Castilla, C., et al., Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000. 38(14): p. 1995-2001. 30. El-Hendawy, A.-N.A., et al., Influence of HNO 3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 2003. 41(4): p. 713-722. 31. Raymundo‐Piñero, E., et al., Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Advanced Functional Materials, 2009. 19(7): p. 1032-1039. 32. Xu, B., et al., What is the choice for supercapacitors: graphene or graphene oxide? Energy & Environmental Science, 2011. 4(8): p. 2826-2830. 33. Han, J., et al., Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS nano, 2012. 7(1): p. 19-26. 34. Paraknowitsch, J.P., et al., Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013. 6(10): p. 2839-2855. 35. Lee, W.S.V., et al., Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 2015. 12: p. 250-257. 36. Wen, Y., et al., Synthesis of Phosphorus‐Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry-A European Journal, 2015. 21(1): p. 80-85. 37. Yang, Z., et al., Recent advancement of nanostructured carbon for energy applications. Chemical reviews, 2015. 115(11): p. 5159-5223. 38. Béguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Advanced materials, 2014. 26(14): p. 2219-2251. 39. 王晓娇., et al., 超级电容器用含氮多孔炭电极材料的研究进展. 材料導報, 2011. 25(4A): p. 24-27+ 32. 40. Jurewicz, K., et al., Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochimica Acta, 2003. 48(11): p. 1491-1498. 41. Yu, M., et al., Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Advances, 2017. 7(25): p. 15293-15301. 42. Li, X., et al., Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 2009. 131(43): p. 15939-15944. 43. Hulicova‐Jurcakova, D., et al., Nitrogen‐Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009. 19(11): p. 1800-1809. 44. Seredych, M., et al., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008. 46(11): p. 1475-1488. 45. Suzuki, T., et al., Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial & engineering chemistry research, 1994. 33(11): p. 2840-2845. 46. Simon, P., et al., Capacitive energy storage in nanostructured carbon–electrolyte systems. Accounts of chemical research, 2012. 46(5): p. 1094-1103. 47. Beidaghi, M., et al., Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science, 2014. 7(3): p. 867-884. 48. Wu, Z.S., et al., Layer‐by‐Layer Assembled Heteroatom‐Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro‐Supercapacitors. Advanced Materials, 2014. 26(26): p. 4552-4558. 49. Chi, Y.-W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano letters, 2016. 16(9): p. 5719-5727. 50. Li, B., et al., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy & Environmental Science, 2016. 9(1): p. 102-106. 51. Shiraishi, S., et al., Heat-treatment and nitrogen-doping of activated carbons for high voltage operation of electric double layer capacitor. Key Engineering Materials. 2012: Trans Tech Publ. 52. Portet, C., et al., Effect of carbon particle size on electrochemical performance of EDLC. Journal of the Electrochemical Society, 2008. 155(7): p. A531-A536. 53. Lei, Z., et al., Mesoporous carbon nanospheres with an excellent electrocapacitive performance. Journal of Materials Chemistry, 2011. 21(7): p. 2274-2281. 54. Huang, C.-W., et al., Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry, 2012. 22(15): p. 7314-7322. 55. Zhao, Y., et al., Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode. Energy & Fuels, 2014. 28(2): p. 1561-1568. 56. Rennie, A.J., et al., Influence of particle size distribution on the performance of ionic liquid-based electrochemical double layer capacitors. Scientific reports, 2016. 6: p. 22062. 57. Yang, R., et al., Computer simulation of the packing of fine particles. Physical review E, 2000. 62(3): p. 3900. 58. Tian, Y., et al., Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor. Journal of Power Sources, 2008. 184(2): p. 675-681. 59. Tanahashi, I., et al., The effect of heat-treatment on the properties of activated carbon fibre cloth polarizable electrodes. Journal of applied electrochemistry, 1991. 21(1): p. 28-31. 60. Uno, M., et al., Accelerated charge–discharge cycling test and cycle life prediction model for supercapacitors in alternative battery applications. IEEE Transactions on Industrial Electronics, 2012. 59(12): p. 4704-4712. 61. Ratajczak, P., et al., Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. Journal of Applied Electrochemistry, 2014. 44(4): p. 475-480. 62. Lestriez, B., et al., Functions of polymers in composite electrodes of lithium ion batteries. Comptes Rendus Chimie, 2010. 13(11): p. 1341-1350. 63. Zheng, H., et al. Optimization of ratio and amount of CMC/SBR binder for a graphite anode. in Meeting Abstracts. 2010: The Electrochemical Society. 64. Li, C.-C., et al., Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO 2 cathodes. Journal of Power Sources, 2013. 227: p. 204-210. 65. Yan, X., et al., Enhanced electrochemical properties of TiO 2 (B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. Journal of Power Sources, 2014. 246: p. 95-102. 66. Kim, H.S., et al., Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries. Journal of Power Sources, 2009. 189(1): p. 108-113. 67. Dai, B., et al., Enhanced Activity of Hydrochlorination of Acetylene Using Melamine-Modified Activated Carbon Supported Gold Catalyst. Asian Journal of Chemistry, 2013. 25(17): p. 9473. 68. Subramaniyam, C.M., et al., Enhanced capacity and cycle life of nitrogen-doped activated charcoal anode for the lithium ion battery: a solvent-free approach. RSC Advances, 2017. 7(27): p. 16505-16512. 69. Sun, L., et al., Nitrogen‐Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry-A European Journal, 2014. 20(2): p. 564-574. 70. Li, S.-M., et al., N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. Journal of Power Sources, 2015. 278: p. 218-229.
|