跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅家容
研究生(外文):Chia-Jung Fu
論文名稱:活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
論文名稱(外文):The Effect on Supercapacitor Property by Surface Functional Groups and Particle Size of Activated Carbon Powder.
指導教授:張仍奎
指導教授(外文):Jeng-Kuei Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:131
中文關鍵詞:活性碳粒徑大小官能基超級電容器有機電解液
外文關鍵詞:Activated CarbonParticle SizeFunctional GroupsSupercapacitorOrganic Electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用中國碳素鋼鐵公司提供之活性碳做為超高電容器的電極,並調控不同持溫的溫度、不同熱處理氣氛以及活性碳本身顆粒大小;藉以探討活性碳表面官能基和活性碳顆粒大小對超高電容器性質的影響,而其中電解液是選用商業上較常運用的1 M TEABF4/PC (Tetraethylammonium Tetrafluoroborate)/(Propylene Carbonate)做為電解液。
首先探討不同熱處理溫度對電容器的影響:本實驗在450 oC、600 oC、750 oC、850 oC、950 oC氮氣下進行熱處理,由材料分析能夠觀察到:隨著熱處理溫度提高,除了降低活性碳比表面積外、其表面含氧官能基含量也隨之下降;在電化學分析方面,提高溫度江造成的比表面積減少,其結果反應在低速電容值的下降;然而表面含氧官能基含量的減少能增進電容器的耐用度(循環穩定性、高速穩定性、漏電流特性等)。
根據上述實驗結果,進一步討論在750 oC下不同氣氛下進行熱處理對電容器的影響;比較N2、NO、NH3、Melamine等氣氛,預期透過氮摻雜提高電容器的性能。由材料分析中能發現:使用不同熱處理方式皆能有效的對碳材進行摻氮,其中以Melamine所摻雜之氮含量最多;電化學分析方面,顯現NO熱處理方式在穩定性上有較佳的表現。
另一方面,將不同粒徑分布的活性碳透過750 oC氮氣熱處理,試觀察不同粒徑尺寸對於超高電容器性質的影響。在材料分析中能夠得知:隨著粒徑尺寸越小,其碳材表面所含氧官能基的量也越多,進而影響電容器的電化學性質(循環穩定性、高速穩定性、漏電流特性等)。
In the present study, the activated carbon obtained from China Carbon Steel Company was used as the electrode for the super capacitor. The different heat treatment temperature, atmosphere, and the particle size of activated carbon were controlled and their effects were studied comprehensively to understand the electrochemical behavior of super capacitor. 1M TEABF4 (Tetraethylammonium Tetrafluoroborate)/PC (Propylene) was used as an electrolyte. The effects of different heat treatment temperatures (450, 600, 750, 850 and 950 °C) on the capacitors were investigated. This study shows that with increasing the heat treatment temperature, the oxygen content on the surface of activated carbon and the specific surface area reduced leading to decrease in the capacitance at low-current density. However, the decrease in the content of the oxygen-containing functional groups can improve the durability of the capacitor (cycle stability, high-rate performance, leakage current characteristics, etc.). On the basis of the above experimental results, the effects of heat treatment on the capacitors were investigated under different atmospheres at 750°C. Also, we doped Nitrogen in the activated carbon by using different heat treatment atmosphere (Melamine, NO, and NH3) to improve the performance of the capacitors.
Further, the activated carbon with different particle size distribution was heat treated at 750 °C in the nitrogen atmosphere. The effect of particle size on the properties of super capacitor was investigated. It is found that the smaller the particle size, the more the amount of oxygen functional groups is contained on the surface of the carbonaceous material and as result of which affects the electrochemical properties of the capacitor (cycle stability, high-speed stability, leakage current characteristics, etc.).
摘要 I
Abstract III
誌謝 V
總目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
第二章 研究背景與文獻回顧 2
2-1 超高電容器簡介 2
2-2 影響電雙層電容器電容值的因素 4
2-3 含氧官能基影響 6
2-3-1 含氧官能基產生原因 6
2-3-2 含氧官能基對電容產生之負面影響 7
2-3-3 熱處理移除含氧官能基 8
2-3-4 運用熱處理進行活性碳移除含氧官能基對超級電容電化學之影響 9
2-4 摻氮官能基 15
2-4-1 摻氮原因 15
2-4-2 摻氮方法 16
2-4-3 不同氣氛下摻雜氮原子 16
2-4-4 對活性碳材進行摻氮探討其對電化學行為之影響 18
2-5 活性碳粒徑大小 26
2-5-1 活性碳顆粒大小造成之影響 26
2-5-2 活性碳顆粒大小於超級電容中之應用 27
第三章 實驗方法與步驟 32
3-1 活性碳材料取得 32
3-2 材料特性鑑定 32
3-2-1 碳材形貌之分析 32
3-2-2 碳材官能基鑑定 32
3-2-3 活性碳比表面積量測 33
3-3 電化學測試實驗步驟 34
3-3-1 循環伏安法(Cyclic Voltammetry,CV) 35
3-3-2 計時電位法 (Chronopotentimetry,CP) 36
3-3-3 交流阻抗(Electrochemical Impedance Spectroscopy,EIS) 36
3-3-4 漏電流測試(Leakage Current) 36
3-3-5 循環穩定性分析(Cycle Life Test) 37
3-3-6 氣脹分析 37
第四章 結果與討論 38
4-1 活性碳材於不同熱處理溫度比較 38
4-1-1 材料結構分析 38
4-1-2 官能基鑑定 40
4-1-3 電化學性質 43
4-1-4 高壓方面之電化學性質 51
4-2 活性碳材於不同黏著劑之電化學性能比較 59
4-2-1 電化學性質 60
4-3 活性碳材於不同熱處理進行摻氮比較 66
4-3-1 材料結構分析 66
4-3-2 官能基鑑定 69
4-3-3 電化學性質 74
4-4 不同粒徑活性碳材對於電化學之影響 85
4-4-1 材料結構分析 85
4-4-2 官能基鑑定 91
4-4-3 電化學性質 96
第五章 結論 106
活性碳材於不同熱處理溫度比較 106
活性碳材於不同黏著劑比較 106
活性碳材於不同摻氮方法比較 106
活性碳材於不同粒徑大小比較 107

參考文獻 108
1. Bleda-Martínez, M., et al., Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon, 2005. 43(13): p. 2677-2684.
2. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
3. Simon, P., et al., Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
4. Çeçen, F., et al., Activated carbon. Kirk-othmer encyclopedia of chemical technology, 1992.
5. Conway, B.E., et al., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
6. Dastgheib, S.A., et al., Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004. 42(3): p. 547-557.
7. Chen, J.P., et al., Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 2003. 41(10): p. 1979-1986.
8. Evans, M., et al., The production of chemically-activated carbon. Carbon, 1999. 37(2): p. 269-274.
9. Otowa, T., et al., Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon, 1997. 35(9): p. 1315-1319.
10. Yang, R.T., et al., Adsorbents: fundamentals and applications. 2003: John Wiley & Sons.
11. Biniak, S., et al., Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. Chemistry and physics of carbon, 2001: p. 125-226.
12. Puri, B., et al., Chemistry and physics of carbon. Chemistry and Physics of Carbon. Marcel Dekker, New York, 1970: p. 191-282.
13. Garten, V., et al., A new interpretation of the acidic and basic structures in carbons. II. The chromene-carbonium ion couple in carbon. Australian Journal of Chemistry, 1957. 10(3): p. 309-328.
14. Shafeeyan, M.S., et al., A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010. 89(2): p. 143-151.
15. Kaneko, K., et al., Microporosity and adsorption characteristics against NO, SO2, and NH3 of pitch-based activated carbon fibers. Carbon, 1988. 26(3): p. 327-332.
16. Qu, D., et al., Studies of the activated carbons used in double-layer supercapacitors. Journal of power sources, 2002. 109(2): p. 403-411.
17. Yoshida, A., et al., Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon, 1990. 28(5): p. 611-615.
18. Morimoto, T., et al., Electric double-layer capacitor using organic electrolyte. Journal of Power Sources, 1996. 60(2): p. 239-247.
19. Hsieh, C.-T., et al., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 2002. 40(5): p. 667-674.
20. Ishimoto, S., et al., Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors. Journal of the Electrochemical Society, 2009. 156(7): p. A563-A571.
21. Azaïs, P., et al., Causes of supercapacitors ageing in organic electrolyte. Journal of power sources, 2007. 171(2): p. 1046-1053.
22. Alkire, R.C., et al., Electrochemistry of Carbon Electrodes. Vol. 16. 2015: John Wiley & Sons.
23. Menéndez, J.A., et al., On the modification and characterization of chemical surface properties of activated carbon: in the search of carbons with stable basic properties. Langmuir, 1996. 12(18): p. 4404-4410.
24. Pietrzak, R., et al., XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel, 2009. 88(10): p. 1871-1877.
25. Menendez, J., et al., On the difference between the isoelectric point and the point of zero charge of carbons. Carbon, 1995. 33(11): p. 1655-1657.
26. Shin, S., et al., A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 1997. 35(12): p. 1739-1743.
27. Figueiredo, J., et al., Modification of the surface chemistry of activated carbons. carbon, 1999. 37(9): p. 1379-1389.
28. Ju, Y.T., et al., The reduction effect of oxygen functional groups in activated carbon for supercapacitor electrode. J. Ceram. Process. Res., 2012. 13: p. S159-S162.
29. Moreno-Castilla, C., et al., Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000. 38(14): p. 1995-2001.
30. El-Hendawy, A.-N.A., et al., Influence of HNO 3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 2003. 41(4): p. 713-722.
31. Raymundo‐Piñero, E., et al., Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Advanced Functional Materials, 2009. 19(7): p. 1032-1039.
32. Xu, B., et al., What is the choice for supercapacitors: graphene or graphene oxide? Energy & Environmental Science, 2011. 4(8): p. 2826-2830.
33. Han, J., et al., Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS nano, 2012. 7(1): p. 19-26.
34. Paraknowitsch, J.P., et al., Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013. 6(10): p. 2839-2855.
35. Lee, W.S.V., et al., Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 2015. 12: p. 250-257.
36. Wen, Y., et al., Synthesis of Phosphorus‐Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry-A European Journal, 2015. 21(1): p. 80-85.
37. Yang, Z., et al., Recent advancement of nanostructured carbon for energy applications. Chemical reviews, 2015. 115(11): p. 5159-5223.
38. Béguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Advanced materials, 2014. 26(14): p. 2219-2251.
39. 王晓娇., et al., 超级电容器用含氮多孔炭电极材料的研究进展. 材料導報, 2011. 25(4A): p. 24-27+ 32.
40. Jurewicz, K., et al., Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochimica Acta, 2003. 48(11): p. 1491-1498.
41. Yu, M., et al., Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Advances, 2017. 7(25): p. 15293-15301.
42. Li, X., et al., Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 2009. 131(43): p. 15939-15944.
43. Hulicova‐Jurcakova, D., et al., Nitrogen‐Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009. 19(11): p. 1800-1809.
44. Seredych, M., et al., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008. 46(11): p. 1475-1488.
45. Suzuki, T., et al., Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial & engineering chemistry research, 1994. 33(11): p. 2840-2845.
46. Simon, P., et al., Capacitive energy storage in nanostructured carbon–electrolyte systems. Accounts of chemical research, 2012. 46(5): p. 1094-1103.
47. Beidaghi, M., et al., Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science, 2014. 7(3): p. 867-884.
48. Wu, Z.S., et al., Layer‐by‐Layer Assembled Heteroatom‐Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro‐Supercapacitors. Advanced Materials, 2014. 26(26): p. 4552-4558.
49. Chi, Y.-W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano letters, 2016. 16(9): p. 5719-5727.
50. Li, B., et al., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy & Environmental Science, 2016. 9(1): p. 102-106.
51. Shiraishi, S., et al., Heat-treatment and nitrogen-doping of activated carbons for high voltage operation of electric double layer capacitor. Key Engineering Materials. 2012: Trans Tech Publ.
52. Portet, C., et al., Effect of carbon particle size on electrochemical performance of EDLC. Journal of the Electrochemical Society, 2008. 155(7): p. A531-A536.
53. Lei, Z., et al., Mesoporous carbon nanospheres with an excellent electrocapacitive performance. Journal of Materials Chemistry, 2011. 21(7): p. 2274-2281.
54. Huang, C.-W., et al., Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry, 2012. 22(15): p. 7314-7322.
55. Zhao, Y., et al., Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode. Energy & Fuels, 2014. 28(2): p. 1561-1568.
56. Rennie, A.J., et al., Influence of particle size distribution on the performance of ionic liquid-based electrochemical double layer capacitors. Scientific reports, 2016. 6: p. 22062.
57. Yang, R., et al., Computer simulation of the packing of fine particles. Physical review E, 2000. 62(3): p. 3900.
58. Tian, Y., et al., Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor. Journal of Power Sources, 2008. 184(2): p. 675-681.
59. Tanahashi, I., et al., The effect of heat-treatment on the properties of activated carbon fibre cloth polarizable electrodes. Journal of applied electrochemistry, 1991. 21(1): p. 28-31.
60. Uno, M., et al., Accelerated charge–discharge cycling test and cycle life prediction model for supercapacitors in alternative battery applications. IEEE Transactions on Industrial Electronics, 2012. 59(12): p. 4704-4712.
61. Ratajczak, P., et al., Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. Journal of Applied Electrochemistry, 2014. 44(4): p. 475-480.
62. Lestriez, B., et al., Functions of polymers in composite electrodes of lithium ion batteries. Comptes Rendus Chimie, 2010. 13(11): p. 1341-1350.
63. Zheng, H., et al. Optimization of ratio and amount of CMC/SBR binder for a graphite anode. in Meeting Abstracts. 2010: The Electrochemical Society.
64. Li, C.-C., et al., Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO 2 cathodes. Journal of Power Sources, 2013. 227: p. 204-210.
65. Yan, X., et al., Enhanced electrochemical properties of TiO 2 (B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. Journal of Power Sources, 2014. 246: p. 95-102.
66. Kim, H.S., et al., Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries. Journal of Power Sources, 2009. 189(1): p. 108-113.
67. Dai, B., et al., Enhanced Activity of Hydrochlorination of Acetylene Using Melamine-Modified Activated Carbon Supported Gold Catalyst. Asian Journal of Chemistry, 2013. 25(17): p. 9473.
68. Subramaniyam, C.M., et al., Enhanced capacity and cycle life of nitrogen-doped activated charcoal anode for the lithium ion battery: a solvent-free approach. RSC Advances, 2017. 7(27): p. 16505-16512.
69. Sun, L., et al., Nitrogen‐Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry-A European Journal, 2014. 20(2): p. 564-574.
70. Li, S.-M., et al., N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. Journal of Power Sources, 2015. 278: p. 218-229.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊