跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳香穎
研究生(外文):Hsiang-Ying Chen
論文名稱:癌細胞入侵至單層緻密血管內皮細胞後的群聚現象
論文名稱(外文):Spatiotemporal evolution of cooperative motion of the cancer/endothelia mixture after cancer cell invasion
指導教授:伊林伊林引用關係
指導教授(外文):Lin I
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:細胞團簇二維漩渦系統二元混合系統
外文關鍵詞:Collective motionCell aggregationTurbulent-like motionBinary mixture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
在生物中,細胞的集體運動是極為重要的過程,如胚胎演化、傷口癒合、癌症轉移等。細胞可透過細胞間繫 (cell junction) 與近鄰細胞產生交互作用與主動爬行形成強耦合自主多體系統 (coupled many-body active system)並可展現集體合作運動。
我們研究癌細胞入侵至二維緻密單層血管內皮細胞後在時空上癌細胞群聚現象與其之動力行為。單層的血管內皮細胞運動隨著時間與細胞數增生而從液態持續減緩至冷液體相 (cold-liquid state),意旨內皮細胞將持續運動永不停歇,這是因為細胞為主動軟物質,有無限多個自由度可主動伸展及收縮其細胞形態。並透過細胞間隙 (cell junction)交換彼此動量,因此單層血管內皮細胞可持續運動並展現類漩渦運動 (vortex-like motion)。
我們混合了15 % 癌細胞於緻密單層血管內皮細胞,觀察癌細胞團簇後在時空上的演變,用活體染色發現癌細胞藉由破壞血管內皮細胞間隙侵略至單層緻密的血管內皮細胞層,由於癌細胞造成的血管內皮細胞破口處大小不依而引發的集體運動行為呈現多尺度的群聚現象,亦發現癌細胞的集體運動為多尺度的類漩渦運動 (turbulent-like motion),其頻譜呈現冪次下降 (power law decay),越大的癌細胞群可展現較強、較多尺度的漩渦運動。
Through the interplay of mutual coupling and self-propelling, coupled many-body active systems can exhibit collective motions, especially in biological systems such as fish schools, flocking birds, dense bacteria, confluent cells. In the systems of 2D confluent cells on the substrate, cells are strongly coupled with their neighbors through cell junctions. The highly deformable cell boundary contains a large number of degrees of freedom. Therefore, the confluent epithelial and endothelial cell monolayers have been used as model systems to investigate the intriguing cell collective motion. Nevertheless, unlike the studies on collective motion of the single type cell monolayers mainly exhibit liquid-like or solid-like collective motions, the dynamics of mixtures of two different types of cells remain elusive.
In this work, we experimentally study the dynamical evolutions of a confluent endothelial cell (EC) monolayer and a cancer cell (CC)/ EC mixture after the invasion of a small fraction of more motile CCs into a confluent EC monolayer. We demonstrate that the slowed down vortex-like coherent motion of EC-only monolayer, and the rejuvenation of aged motion after the invasion of a small fraction of CCs.
It is found that, the slowed down collective motion in EC-only monolayer is due to the gradual structural relaxation and increasing EC density through proliferation. CC invasion is associated with opening EC cell-cell junctions. With increasing time, CCs tend to gradually aggregate and form larger clusters. The interaction between CCs and ECs through the confining fluctuating irregular EC boundary without EC-CC junction, more CCs in the larger clusters exhibit stronger turbulent-like motion with power law scaling extending to the lower frequency modes. It also leads to longer trajectory persistent length. The speeded up CC dynamics in turn enhances the turbulent-like motion of surrounding ECs and awakes their slowed down dynamics.
1. Introduction 1
2. Background 4
2.1 Cell motion 4
2.1.1 Basic features of cells 5
2.1.2 Cell migration 6
2.1.3 Cell invasion/ Cell metastasis 6
2.2 Collective motion 9
3. Experiment and Analysis 11
3.1 Cell culture 11
3.2 EC/CC cell mixture 12
3.3 Immunofluorescence staining 13
3.4 Observation system 15
3.5 Data analysis 17
4. Result and Discussion 18
4.1 Dynamical evolution of an endothelial cell monolayer 18
4.2 Dynamical evolution of EC/CC mixture 21
4.3 Cancer cell aggregation enhanced turbulent-like cancer cell collective motion and rejuvenation of aged endothelial dynamics 25
5. Conclusion 31
Bibliography 33
Appendix 35
[1] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, Nat. Phys. 11, 1074-1079 (2015).
[2] J. A. Park, et al., Nat. Mater. 14, 1040-1048 (2015).
[3] S. Garcia, E. Hannezo, J. Elgeti, J. F. Joanny, P. Silberzan, and N. S. Gov, Proc. Natl. Acad. Sci. U.S.A. 112 15314-15319 (2015).
[4] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226-1229 (1995).
[5] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale, Proc. Natl. Acad. Sci. U.S.A. 107, 11865 (2010).
[6] N. C. Makris, P. Ratilal, D. T. Symonds, S. Jagannathan, S. Lee, and R. W. Nero, Science 311, 660 (2006).
[7] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)
[8] H. P. Zhang, A. Beer, E.-L. Florin, and H. L. Swinney, Proc. Natl. Acad. Sci. U.S.A. 107, 13626 (2010).
[9] H. H. Wensink, Dunkel J., Heidenreich S., Drescher K., Goldstein R. E., Lowen H., and Yeomans J. M., Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012).
[10] C. Chen, S. Liu, X. -Q. Shi, H. Chate , and Y. Wu, Nature 542, 210 (2017).
[11] L. Angelani, C. Maggi, M. L. Bernardini, A. Rizzo, and R. Di Leonardo, Phys. Rev. Lett. 107, 138302 (2011).
[12] K. A. Liu and L. I, Phys. Rev. E 86, 011924 (2012).
[13] H. H. Wensink and H. Lowen, J. Phys. Condens. Matter 24, 464130 (2012).
[14] Y. S. Su, H. C. Wang, and L. I, Phys. Rev. E 91, 030302(R) (2015).
[15] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D. K. Fygenson, and B. I. Shraiman, Proc. Natl Acad. Sci. U.S.A. 109 (3) 739-744 (2012).
[16] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Proc. Natl Acad. Sci. USA 108 (12), 4714-4719 (2011).
[17] M. G. Castro, S. E. Leggett and I. Y. Wong, Soft Matter 12, 8327-8337 (2016)
[18] A. Nurnberg, T. Kitzing and R. Grosse, Nat. Rev. Cancer, 11, 177-187 (2011).
[19] S. K. Mitra, D. A. Hanson and D. D. Schlaepfer, Nat. Rev., 6, 56-68 (2005)
[20] S. R. K. Vedula, A. Ravasio, C. T. Lim, and B. Ladoux, Physiol. Behav., 28, 370[2] J. A. Park, et al., Nat. Mater. 14, 1040-1048 (2015).
[21] B. Geiger, J. P. Spatz, and A. D. Bershadsky, Nat. Rev. Mol. Cell Biol., 10, 21 (2009)
[22] D. Wirtz, K. Konstantopoulos, and P. C. Searson, Nature Rev. Cancer, 11, 512-522 (2011)
[23] N. Reymond, B. B. d'aua, and A. J. Ridley, Nature Rev. Cancer, 13, 858-870 (2013)
[24] M. Schoumacher, R. D. Goldman, D. Louvard, and D. M. Vignjevic, J. Cell Biol., 189, 541-56 (2010)
[25] O. Ilina, and P. Friedl, J. Cell Sci. 122, 3203-3208. (2009)
[26] E. Anon, X. Serra-Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat, and B. Ladoux, Proc. Natl. Acad. Sci. U.S.A .109, 10891-10896 (2012)
[27] K. D. Nnetu, M. Knorr, D. Strehle, M. Zink, and J. A. Käs, Soft Matter 8(26), 2913-2921 (2012)
[28] L. Petitjean, M. Reffay, E. Grasland-Mongrain, M. Poujade, B. Ladoux, A. Buguin, and P. Silberzan, Biophys. J. 98, 1790 (2010)
[29] D. T. Tambe et al., Nature Mater. 10, 469-475 (2011).
[30] A. Haeger, M. Krause, K. Wolf, and P. Friedl, Biophys. 1840 2386-2395 (2014).
[31] C. Strandkvist, J. Juul, B. Baum, A. J. Kabla, and T. Duke, Interface Focus, 4 20140013 (2014)
[32] W. Thielicke & E. J. Stamhuis, http://PIVlab.blogspot.com.
[33] Ji-Lin Jou, 2016 Master Thesis, National Central University, Taiwan
[34] Yi-Teng Hsiao, 2017 Ph. D Thesis, National Central University, Taiwan
[35] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Phys. Rev. Lett., 121, 018101 (2018).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top