跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊曜滕
研究生(外文):Yao-Teng Chuang
論文名稱(外文):Role of impurities in semiconductor: Silicon and ZnO substrate
指導教授:溫偉源
指導教授(外文):Wei-Yen Woon
學位類別:博士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:108
中文關鍵詞:矽基板氧化鋅離子佈植
外文關鍵詞:SiliconZnOIon implantation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主題將以離子佈植的方法將雜質摻雜於矽基板與氧化鋅基板,探討熱製程對雜質於矽基板產生的應力保存影響與多重離子佈植形成P型氧化鋅薄膜。
由於利用非平衡方式的離子佈植來突破碳離子在矽基板中的平衡溶解度以形成足夠大的應力於假晶型的碳矽合金,故應力如何保存於此雅穩態將會是應力矽基板被應用的關鍵。從高解析度X光繞射儀得知高濃度5*1014 ions/cm2磷摻雜(CP3)的樣品應力大量消失於高溫的退火後,但其他無磷摻雜(C only)或較低濃度磷摻雜(CP1 and CP2)的樣品應力幾乎完整保存,雖然可以確定高濃度磷摻雜會影響應力於熱製程下保存,但從高解析X光繞射儀的模擬可以發現只有深層的應力釋放和摻雜磷濃度有正相關關係而表面的應力釋放卻不全然如此。在樣品表面,只有CP3樣品有著大量的應力釋放消逝而其他樣品的應力卻只有些許應力改變,此現象說明了除了摻雜的磷外樣品表面還有另一個因素影響著應力的保存。從傅氏轉換紅外線光譜可以發現晶格位置上的碳含量(607cm-1)、過渡帶的碳矽化合物(750cm-1)及β-SiC(810cm-1)的特徵訊號皆沒有太大變化,反倒是樣品表面的氧化物與應力釋放消逝有著相同趨勢,在比較各樣品的含氧量發現高濃度的磷摻雜會促使表面氧化且增加氧往樣品深處擴散,而在熱退火製程前的氫氟酸去除CP3之表面氧化層對於應力穩定保存有著顯著幫助。另外,所有經過退火製程的樣品都因電阻值過大而無法進行霍爾量測。基於高解析X光繞射儀、傅氏紅外線光譜和霍爾量測結果,我們不僅可以確定摻雜的磷和退火形成的氧是應力釋放消逝的兩大因素,且在於不超800的退火環境下之所以會有應力釋放消逝是因為晶格位置上的碳有著良好的吸附間隙雜質作用並以體積補償的方式達到應力釋放消逝的機制。最後我們提出一改善的製作流程,並希望能以此流程模組可以製作應力可以保存於矽基板以被N型場效電晶體所應用。
由於授予缺陷的形成能量較低,所以成長的氧化鋅基板都會是天生N型導電性,但若想要突破發光效率的限制,P型氧化鋅的形成來製作氧化鋅同質元件是一必要的條件。在氧化鋅的研究中我們利用特定比例的多重離子佈植來製作P型氧化鋅薄膜,從單元素氮的離子佈植(N sample)只能形成較微N型氧化鋅薄膜而無法有電特性上的轉變,但可以藉由比例為四的氮磷雙重離子佈植(NP sample)來使的原本N型的氧化鋅薄膜變成P型氧化鋅薄膜,且額外的氧離子佈植(NPO sample)不僅可以獲得具有2.34*1019cm-3電洞濃度的最佳導電性P型氧化鋅薄膜且同時也增加了離子佈植後形成P型氧化鋅薄膜的活化溫度範圍,利用P型氧化鋅薄膜與N型氧化鋅薄膜所形成的同質元件可以發現電晶體有著微整流的效果更加確定P型氧化鋅形成於多重離子佈植的樣品。從高解析X光繞射儀和X光光電子能譜的分析,我們可以發現在氮的1S軌域除了有氮原子佔據氧晶格位置的特徵訊號(~397eV)外,氮分子佔據氧的晶格位置的特徵訊號(~399eV)的產生說明從高解析X光繞射儀觀察到的晶格常數會變大是因為相較於其他可能結構較大的氮分子佔據氧的晶格位置而導致整體晶格常數變大。P型氧化鋅是因為離子佈植的磷佔據鋅的晶格位置與氮佔據了氧的晶格位置同時發生並形成複合物的受子缺陷而形成,因此在固定比例的氮磷離子佈植下,增加複合受子缺陷的型成促使P型氧化鋅薄膜生成,且額外的氧離子佈植減少了氧化鋅薄膜表面的氧空缺晶格的施體缺陷,因此可以在較廣的活化溫度範圍內得到較穩定且高電子濃度的P型氧化鋅薄膜。
In this thesis, impurities doped in silicon and ZnO substrate via ion implantation method are conducted for strain stability retention under thermal treatment in strained silicon and P-type ZnO thin films formation with cocktail implantation method.
Since non-equilibrium method, ion implantation, is employed for exceeding the equilibrium solubility and generating larger enough strain in pseudomorphically silicon carbon alloy, strain stability retention in this metastable state in silicon plays a key role for further application. With High resolution X-ray diffractometer, it is found that significant strain relaxation occurs in the highly phosphorus doped concentration, 5*1014 ions/cm2, sample (CP3) under post-annealing thermal treatment, but almost full(adv.) strain stability retains in carbon only (C only) and in lower phosphorus doped concentration samples (CP1 and CP2) under same post-annealing thermal treatment. Even though strain stability retention is affected by the highest phosphorus doped concentration, it is found from dynamics simulation that strain relaxation is proportional to phosphorus doped concentration in only bulk region, not effectual in surface region. In surface region, only significant strain relaxation appears in CP3 sample and little strain relaxation arises in the rest of samples, indicating there is another strain stability retention factor in the surface. From Fourier transform infrared spectroscopy, the characteristic peaks of substitutional carbon at ~607cm-1, transition Si-C at ~705cm-1, and β-SiC at ~810cm-1 do not apparently change. In contrast, the oxygen-related peak area evolution trend is in correspondence with strain relaxation evolution in surface region. Furthermore, it is observed that the highest phosphorus doped concentration promotes the surface oxidation and facilitates oxygen diffused into bulk from SIMS and HF pretreatment prior to post-annealing facilitates the strain stability retention via removed surface oxide. From Hall measurement, only the electrical properties can be obtained in as-grown samples, but the sheet resistance becomes so high that it is overflow for all post-annealing samples.
Based on the results of high resolution X-ray diffractometer, Fourier transform infrared spectroscopy and Hall measurement, it is determined that implanted phosphorus and oxidation via post-annealing are two main factors for strain relaxation and that the volume compensation with good gettering ability of substitutional carbon is the only probably strain relaxation mechanism. Finally, new process flow is proposed for strain stability retention in phosphorus doped SiC alloy for N-MOSFETs fabrication.
Native N-type ZnO substrate is always obtained caused by the formation of donor-like defects, which have lower formation energy, during ZnO growth, but the formation of P-type ZnO substrate is required for overcoming the efficiency limitation of light emitted by ZnO homojunction. Specific ion implantation dosage is utilized for P-type ZnO thin films formation through cocktail implantation method. It is found that mono-doped ZnO by nitrogen implantation results in slight N-type conductivity under thermal activation. Dual-doped ZnO thin film with a N:P ion implantation dose ratio of 4:1 is found to be P-type under certain thermal activation conditions. Higher hole concentration (2.34*1019cm-3) can be achieved in dual-doped ZnO co-implanted with additional oxygen under a wider thermal activation window. It is more convincing P-type ZnO formation by observing a slight rectifying behavior with P-ZnO: (NPO at 600℃)/ N-ZnO (as-grown) homojunction. From high resolution X-ray diffractometer and X-ray photoelectron spectroscopy, we can find that substitutional nitrogen, NO, and substitutional nitrogen molecular, (N2)O, in N1S spetrum are at ~397eV and ~399eV respectively. It elucidates the increasement of lattice constant following the nitrogen implantation since nitrogen molecular exists and dominates the lattice constant. Moreover, the observed P-type conductivities are results of the promoted formation of PZn-4NO complex acceptor defects via the concurrent substitutional of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and the stability of acceptor defects in oxygen co-implanted N:P dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. It demonstrates the prospect of the formation of stable P-type ZnO thin film through cocktail implantation with specific implantation dosage.
Chapter 1 Introduction 1
1.1 Defect in semiconductor: Reduced it or Created it 1

Chapter 2 Background 6
2.1 N-type Metal-Oxide-Semiconductor Field-Effect transistors (MOSFETs) 6
2.1.1 Strained Engineering of MOSFETs 8
2.1.2 Stability of Non-Equilibrium Solid Phase Epitaxial Regrowth 12
2.2 II-IV Semiconductor ZnO 16
2.2.1 Impurties in ZnO 17
2.2.2 P-type ZnO thin film formation 19

Chapter 3 Strained stability retention in Phosphorus Si:C 24
3.1 Sample preparation and Experiment Setup 25
3.1.1 Ion implantation 25
3.1.2 Time Resolved Reflectivity 29
3.2 Methodology 32
3.2.1 High Resolution X-ray Diffraction 32
3.2.2 Fourier Transfer Infrared Spectroscopy 37
3.2.3 Hall Probe 38
3.3 Result and Discussion 40
3.3.1 Stability of Strain during Post-Annealing 40
3.3.2 Characteristic Vibration Mode in FTIR 46
3.3.3 Mechanism of Strain Relaxation 49
Chapter 4 P-type ZnO Thin Film Formation 54
4.1 Sample preparation and Experiment Setup 54
4.1.1 Chemical Vapor Deposition 55
4.2 Methodology 61
4.2.1 Scanning Electron Microscopy 61
4.2.2 Electrical measurement 62
4.2.3 X-ray Photoelectron Spectroscopy 64
4.3 Result and Discussion 67
4.3.1 P-type ZnO formation 67
4.3.2 Chemical bonding from XPS 70
4.3.3 Mechanism of P-type ZnO formation 74

Chapter 5 Conclusions and Outlook 78
5.1 Conclusions 78
5.1.1 On the doping limit for strain stability retention in phosphorus doped Si:C 78
5.1.2 Formation of P-type ZnO thin film through co-implantation 80
5.2 Outlook 81
5.2.1 Strain engineering in N-type MOSFETs 82
5.2.2 P-type ZnO nanostructure formation 82

Bibliography 84
1 Ruffell, S., Mitchell, I. V. & Simpson, P. J. Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation. Journal of Applied Physics 98, 083522, doi:10.1063/1.2113409 (2005).
2 Grudowski, P. et al. An Embedded Silicon-Carbon S/D Stressor CMOS Integration on SOI with Enhanced Carbon Incorporation by Laser Spike Annealing IEEE International SOI Conference Proceedings 07, 17-18 (2007).
3 Ren, Z. et al. On Implementation of Embedded Phosphorus-doped SiC Stressors in SOI nMOSFETs IEEE Symposium on VLSI Technology Digest of Technical Papers 08, 172-173 (2008).
4 Duffy, R. et al. Boron uphill diffusion during ultrashallow junction formation. Applied Physics Letters 82, 3647-3649, doi:10.1063/1.1578512 (2003).
5 Ghani, T. et al. A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors. IEEE IEDM 03, 978-980 (2003).
6 Lizzit, D., Palestri, P., Esseni, D., Revelant, A. & Selmi, L. Analysis of the Performance of n-Type FinFETs With Strained SiGe Channel. IEEE Transactions on Electron Devices 60, 1884-1891, doi:10.1109/ted.2013.2258926 (2013).
7 Liow, T.-Y. et al. Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement IEEE Symposium on VLSI Technology Digest of Technical Papers 06 (2006).
8 Itokawa, H., Miyano, K., Oshima, Y., Mizushima, I. & Suguro, K. Carbon Incorporation into Substitutional Silicon Site by Molecular Carbon Ion Implantation and Recrystallization Annealing as Stress Technique in n-Metal–Oxide–Semiconductor Field-Effect Transistor. Japanese Journal of Applied Physics 49, 04DA05, doi:10.1143/jjap.49.04da05 (2010).
9 Koh, S.-M., Samudra, G. S. & Yeo, Y.-C. Carrier transport in strained N-channel field effect transistors with channel proximate silicon-carbon source/drain stressors. Applied Physics Letters 97, 032111, doi:10.1063/1.3465661 (2010).
10 Sadigh, B. et al. Large enhancement of boron solubility in silicon due to biaxial stress. Applied Physics Letters 80, 4738-4740, doi:10.1063/1.1484557 (2002).
11 Yu, M. H., Wang, L. T., Huang, T. C., Lee, T. L. & Chenga, H. C. The Strained-SiGe Relaxation Induced Underlying Si Defects Following the Millisecond Annealing for the 32 nm PMOSFETs. Journal of The Electrochemical Society 159, H243-H249, doi:10.1149/2.017203jes] (2012).
12 Osten, H. J., Griesche, J. & Scalese, S. Substitutional carbon incorporation in epitaxial Si 1−y C y alloys on Si(001) grown by molecular beam epitaxy. APPLIED PHYSICS LETTERS 74, 836-838 (1999).
13 Chang, H.-T., Lin, I. P., Twan, S.-C., Woon, W.-Y. & Lee, S.-W. Carbon re-incorporation in phosphorus-doped Si1−yCy epitaxial layers during thermal annealing. Journal of Alloys and Compounds 553, 30-34, doi:10.1016/j.jallcom.2012.10.158 (2013).
14 Kim, S.-D. & Woo, J. C. S. Advanced Source/Drain Engineering for Box-Shaped Ultrashallow Junction Formation Using Laser Annealing and Pre-Amorphization Implantation in Sub-100-nm SOI CMOS. IEEE TRANSACTIONS ON ELECTRON DEVICES 49, 1748-1754 (2002).
15 OLSON, G. L. & ROTH, J. A. KINETICS OF SOLID PHASE CRYSTALLIZATION IN AMORPHOUS SILICON (1988).
16 Woon, W. Y., Wang, S. H., Chuang, Y. T., Chuang, M. C. & Chen, C. L. Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth. Applied Physics Letters 97, 141906, doi:10.1063/1.3497195 (2010).
17 Hoong-Shing, W. et al. Silicon-Carbon Stressors With High Substitutional Carbon Concentration and In Situ Doping Formed in Source/Drain Extensions of n-Channel Transistors. IEEE Electron Device Letters 29, 460-463, doi:10.1109/led.2008.920274 (2008).
18 Ye, Z. et al. A study of low energy phosphorus implantation and annealing in Si:C epitaxial films. Semiconductor Science and Technology 22, 171-174, doi:10.1088/0268-1242/22/2/030 (2007).
19 Yanga, B. et al. Strain Loss in Epitaxial Si:C Films Induced by Phosphorus Diffusion The Electrochemical Society 16, 1021-1024 (2008).
20 Strane, J. W. et al. Precipitation and relaxation in strained Si, &JSi heterostructures J. Appl. Phys. 76, 3656-3668 (1994).
21 Chuang, Y.-T., Wang, S.-H. & Woon, W.-Y. Effect of impurities on thermal stability of pseudomorphically strained Si:C layer. Applied Physics Letters 98, 141918, doi:10.1063/1.3572339 (2011).
22 Powell, A. R., LeGoues, F. K. & Iyer, S. S. Formation of β‐SiC nanocrystals by the relaxation of Si1−yCy random alloy layers. Applied Physics Letters 64, 324-326, doi:10.1063/1.111195 (1994).
23 Fang, X. et al. Phosphorus-Doped p-Type ZnO Nanorods and ZnO Nanorod p-n Homojunction LED Fabricated by Hydrothermal Method. J. Phys. Chem. C 113, 21208-21212 (2009).
24 Nakahara, K. et al. Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Applied Physics Letters 97, 013501, doi:10.1063/1.3459139 (2010).
25 Ivanoff Reyes, P. et al. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Applied Physics Letters 101, 031118, doi:10.1063/1.4737648 (2012).
26 Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Applied Physics Letters 82, 733-735, doi:10.1063/1.1542677 (2003).
27 Lim, S. J., Kwon, S.-j., Kim, H. & Park, J.-S. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Applied Physics Letters 91, 183517, doi:10.1063/1.2803219 (2007).
28 Look, D. C. Recent advances in ZnO materials and devices. Materials Science and Engineering B80, 383-387 (2001).
29 Zhang, S. B., Wei, S. H. & Zunger, A. Intrinsicn-type versusp-type doping asymmetry and the defect physics of ZnO. Physical Review B 63, doi:10.1103/PhysRevB.63.075205 (2001).
30 Yan, Y., Li, J., Wei, S. H. & Al-Jassim, M. M. Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys Rev Lett 98, 135506, doi:10.1103/PhysRevLett.98.135506 (2007).
31 Xiu, F. X., Yang, Z., Mandalapu, L. J. & Liu, J. L. Donor and acceptor competitions in phosphorus-doped ZnO. Applied Physics Letters 88, 152116, doi:10.1063/1.2194870 (2006).
32 Mannam, R., Eswaran, S. K., DasGupta, N. & Rao, M. S. R. Zn-vacancy induced violet emission in p-type phosphorus and nitrogen codoped ZnO thin films grown by pulsed laser deposition. Applied Surface Science 347, 96-100, doi:10.1016/j.apsusc.2015.04.057 (2015).
33 Yao, B. et al. Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering. Journal of Applied Physics 99, 123510, doi:10.1063/1.2208414 (2006).
34 Li, J. et al. Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. Journal of Applied Physics 113, 193105, doi:10.1063/1.4805778 (2013).
35 Huang, Y.-J., Shih, M.-F., Chou, C.-P., Lo, K.-Y. & Chu, S.-Y. Fabrication of p-Type ZnO Films Grown on Arsenic-Implanted Silicon via Thermal Diffusion at Various Substrate Temperatures. ECS Journal of Solid State Science and Technology 1, P276-P278 doi:10.1149/2.018206jss (2012).
36 Yuan, M. et al. The point defect structure and its transformation in As-implanted ZnO crystals. Journal of Physics D: Applied Physics 45, 085103, doi:10.1088/0022-3727/45/8/085103 (2012).
37 Jeong, T. S. et al. Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals. Journal of Electronic Materials 43, 2688-2693, doi:10.1007/s11664-014-3136-z (2014).
38 Wang, M.-C. et al. Strained pMOSFETs with SiGe Channel and Embedded SiGe Source/Drain Stressor under Heating and Hot-Carrier Stresses IEEE 13, 371-374 (2013).
39 Kang, C. Y. et al. A Novel Electrode-Induced Strain Engineering for High Performance SOI FinFET utilizing Si (110) Channel for Both N and PMOSFETs. IEDM (2006).
40 Strane, J. W. et al. Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy. Journal of Applied Physics 79, 637, doi:10.1063/1.360806 (1996).
41 Mitchell, T. O., Hoyt, J. L. & Gibbons, J. F. Substitutional carbon incorporation in epitaxial Si1−yCy layers grown by chemical vapor deposition. Applied Physics Letters 71, 1688-1690, doi:10.1063/1.119794 (1997).
42 Liu, Y. et al. Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy VLSI 03, 44-45 (2007).
43 Ang, K.-W. et al. Strained n-MOSFET With Embedded Source/Drain Stressors and Strain-Transfer Structure (STS) for Enhanced Transistor Performance. IEEE Transactions on Electron Devices 55, 850-857, doi:10.1109/ted.2007.915053 (2008).
44 Hsieh, E. R. & Chung, S. S. The proximity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters 96, 093501, doi:10.1063/1.3340926 (2010).
45 Park, S. Y. et al. Carbon incorporation pathways and lattice sites in Si1−yCy alloys grown on Si(001) by molecular-beam epitaxy. Journal of Applied Physics 91, 5716-5727, doi:10.1063/1.1465122 (2002).
46 Guedj, C., Dashiell, M. W., Kulik, L., Kolodzey, J. & Hairie, A. Precipitation of β-SiC in Si1−yCy alloys. Journal of Applied Physics 84, 4631-4633, doi:10.1063/1.368703 (1998).
47 Kim, Y. J., Kim, T.-J., Kim, T.-K., Park, B. & Song, J. H. The Loss Kinetics of Substitutional Carbon in Si1-xCx Regrowth by Solid Phase Epitaxy. Jpn. J. Appl. Phys. 40, 773-776 (2001).
48 Goorsky, M. S. et al. Thermal stability of Si1−xCx/Si strained layer superlattices. Applied Physics Letters 60, 2758-2760, doi:10.1063/1.106868 (1992).
49 Fischer, G. G., Zaumseil, P., Bugiel, E. & Osten, H. J. Investigation of the high temperature behavior of strained Si1−yCy /Si heterostructures. Journal of Applied Physics 77, 1934-1937, doi:10.1063/1.358826 (1995).
50 Osten, H. J. et al. Strain relaxation in tensile-strained Si1-yCy layers on Si(001). Semicond. Sci. Technol. 11, 1678-1687 (1996).
51 Newman, S. P. C. a. R. C. The selective trapping of self-interstitials by interstitial carbon impurities in electron irradiated silicon. Semicond. Sci. Technol. 2, 691-694 (1987).
52 Werner, P., Eichler, S., Mariani, G., Kögler, R. & Skorupa, W. Investigation of CxSi defects in C implanted silicon by transmission electron microscopy. Applied Physics Letters 70, 252-254, doi:10.1063/1.118381 (1997).
53 Ku, K. C. et al. Effects of germanium and carbon coimplants on phosphorus diffusion in silicon. Applied Physics Letters 89, 112104, doi:10.1063/1.2347896 (2006).
54 Edelman, L. A., Jin, S., Jones, K. S., Elliman, R. G. & Rubin, L. M. Effect of carbon codoping on boron diffusion in amorphous silicon. Applied Physics Letters 93, 072107, doi:10.1063/1.2975833 (2008).
55 Boucaud, P. et al. Photoluminescence of strained Si1−yCy alloys grown at low temperature. Applied Physics Letters 66, 70-72, doi:10.1063/1.114186 (1995).
56 Zou, C. W. et al. Study of a nitrogen-doped ZnO film with synchrotron radiation. Applied Physics Letters 94, 171903, doi:10.1063/1.3125255 (2009).
57 Lin, B., Fu, Z. & Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters 79, 943-945, doi:10.1063/1.1394173 (2001).
58 Tian, R.-Y. & Zhao, Y.-J. The origin of p-type conduction in (P, N) codoped ZnO. Journal of Applied Physics 106, 043707, doi:10.1063/1.3195060 (2009).
59 Ryu, Y. R. et al. Synthesis of p-type ZnO films. Journal of Crystal Growth 216, 330-334 (2000).
60 Lu, J. G. et al. Control of p- and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters 89, 112113, doi:10.1063/1.2354034 (2006).
61 Xiu, F. X., Yang, Z., Mandalapu, L. J., Liu, J. L. & Beyermann, W. P. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Applied Physics Letters 88, 052106, doi:10.1063/1.2170406 (2006).
62 Tan, S. T. et al. p-type conduction in unintentional carbon-doped ZnO thin films. Applied Physics Letters 91, 072101, doi:10.1063/1.2768917 (2007).
63 Myers, M. A. et al. P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Applied Physics Letters 101, 112101, doi:10.1063/1.4751467 (2012).
64 Park, C. H., Zhang, S. B. & Wei, S.-H. Origin ofp-type doping difficulty in ZnO:The impurity perspective. Physical Review B 66, 073202, doi:10.1103/PhysRevB.66.073202 (2002).
65 Heo, Y. W., Ip, K., Park, S. J., Pearton, S. J. & Norton, D. P. Shallow donor formation in phosphorus-doped ZnO thin films. Applied Physics A 78, 53-57, doi:10.1007/s00339-003-2243-0 (2004).
66 Tabet, N., Faiz, M. & Al-Oteibi, A. XPS study of nitrogen-implanted ZnO thin films obtained by DC-Magnetron reactive plasma. Journal of Electron Spectroscopy and Related Phenomena 163, 15-18, doi:10.1016/j.elspec.2007.11.003 (2008).
67 Lyons, J. L., Janotti, A. & Van de Walle, C. G. Why nitrogen cannot lead to p-type conductivity in ZnO. Applied Physics Letters 95, 252105, doi:10.1063/1.3274043 (2009).
68 Liu, L. et al. p-Type conductivity in N-doped ZnO: the role of the N(Zn)-V(O) complex. Phys Rev Lett 108, 215501, doi:10.1103/PhysRevLett.108.215501 (2012).
69 Duan, L. et al. The synthesis and characterization of Ag-N dual-doped p-type ZnO: experiment and theory. Phys Chem Chem Phys 16, 4092-4097, doi:10.1039/c3cp53067a (2014).
70 Sui, Y. et al. Effects of (P, N) dual acceptor doping on band gap and p-type conduction behavior of ZnO films. Journal of Applied Physics 113, 133101, doi:10.1063/1.4798605 (2013).
71 Sui, Y. R. et al. Fabrication and characterization of P–N dual acceptor doped p-type ZnO thin films. Applied Surface Science 287, 484-489, doi:10.1016/j.apsusc.2013.10.010 (2013).
72 Yang, J.-J., Fang, Q.-Q., Wang, W.-N., Wang, D.-D. & Wang, C. Pulsed laser deposition of Li–N dual acceptor in p-ZnO:(Li, N) thin film and the p-ZnO:(Li, N)/n-ZnO homojunctions on Si(100). Journal of Applied Physics 115, 124509, doi:10.1063/1.4868515 (2014).
73 Oh Kim, C. et al. Effect of (O, As) dual implantation on p-type doping of ZnO films. Journal of Applied Physics 110, 103708, doi:10.1063/1.3662908 (2011).
74 Ma, Y. et al. Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy. Journal of Applied Physics 95, 6268-6272, doi:10.1063/1.1713040 (2004).
75 Armour, D. G. Ion implantation. Vacuum 37, 423-427 (1987).
76 The Stopping and Range of Ions in Matter http://srim.org.
77 W.E. Beadle, J. C. C. T., R.D. Plummer. Quick Reference Manual for Silicon Integrated Circuit Technology. (1985).
78 Mantl, S. et al. Strain relaxation of epitaxial SiGe layers on Si(100) improved by hydrogen implantation Nuclear Instruments and Methods in Physics Research B 147, 29-34 (1999).
79 NEWMAN, I. C. & WILLIS, J. B. VIBRATIONAL ABSORPTION OF CARBON IN SILICON J. Phys. Chem. Solids 26, 373-379 (1964).
80 KIMURA, T., KAGIYAMA, S. & YUGO, S. STRUCTURE AND ANNEALING PROPERTIES OF SILICON CARBIDE THIN LAYERS FORMED BY IMPLANTATION OF CARBON IONS IN SILICON. Thin Solid Films 81, 319-327 (1981).
81 Borghesi, A., Pivac, B., Sassella, A. & Stella, A. Oxygen precipitation in silicon. Journal of Applied Physics 77, 4169-4244, doi:10.1063/1.359479 (1995).
82 Oehrlein, G. S., Lindström, J. L. & Corbett, J. W. Carbon‐oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Applied Physics Letters 40, 241-243, doi:10.1063/1.93060 (1982).
83 Ha, C. P., Plummer, J. D. & Meindl, J. D. Thermal Oxidation of Heavily Phosphorus-Doped Silicon J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 125, 665-671 (1978).
84 Kulik, L. V., Hits, D. A., Dashiell, M. W. & Kolodzey, J. The effect of composition on the thermal stability of Si1−x−yGexCy/Si heterostructures. Applied Physics Letters 72, 1972-1974, doi:10.1063/1.121238 (1998).
85 Pawlak, B. J. et al. Suppression of phosphorus diffusion by carbon co-implantation. Applied Physics Letters 89, 062102, doi:10.1063/1.2234315 (2006).
86 Yeong, S. H. et al. Defect engineering by surface chemical state in boron-doped preamorphized silicon APPLIED PHYSICS LETTERS 91, 102112 (2007).
87 Deng, H. et al. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films 458, 43-46, doi:10.1016/j.tsf.2003.11.288 (2004).
88 Liu, X., Wu, X., Cao, H. & Chang, R. P. H. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 95, 3141-3147, doi:10.1063/1.1646440 (2004).
89 Xie, Y. et al. Enforced c-axis growth of ZnO epitaxial chemical vapor deposition films on a-plane sapphire. Applied Physics Letters 100, 182101, doi:10.1063/1.4709430 (2012).
90 Lin, H. et al. Characterization of m-plane ZnO thin film on γ-LiAlO2 (100) substrate by metal-organic chemical vapor deposition. Journal of Alloys and Compounds 467, L8-L10, doi:10.1016/j.jallcom.2007.12.021 (2009).
91 Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. & Steiner, T. Recent advances in processing of ZnO. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, 932, doi:10.1116/1.1714985 (2004).
92 Museur, L. et al. Modification of ZnO thin films induced by high-density electronic excitation of femtosecond KrF laser. Journal of the Optical Society of America B 31, 1351, doi:10.1364/josab.31.001351 (2014).
93 Look, D. C. & Claflin, B. P-type doping and devices based on ZnO. physica status solidi (b) 241, 624-630, doi:10.1002/pssb.200304271 (2004).
94 Barnes, T. M., Olson, K. & Wolden, C. A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Applied Physics Letters 86, 112112, doi:10.1063/1.1884747 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊