|
1 Ruffell, S., Mitchell, I. V. & Simpson, P. J. Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation. Journal of Applied Physics 98, 083522, doi:10.1063/1.2113409 (2005). 2 Grudowski, P. et al. An Embedded Silicon-Carbon S/D Stressor CMOS Integration on SOI with Enhanced Carbon Incorporation by Laser Spike Annealing IEEE International SOI Conference Proceedings 07, 17-18 (2007). 3 Ren, Z. et al. On Implementation of Embedded Phosphorus-doped SiC Stressors in SOI nMOSFETs IEEE Symposium on VLSI Technology Digest of Technical Papers 08, 172-173 (2008). 4 Duffy, R. et al. Boron uphill diffusion during ultrashallow junction formation. Applied Physics Letters 82, 3647-3649, doi:10.1063/1.1578512 (2003). 5 Ghani, T. et al. A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors. IEEE IEDM 03, 978-980 (2003). 6 Lizzit, D., Palestri, P., Esseni, D., Revelant, A. & Selmi, L. Analysis of the Performance of n-Type FinFETs With Strained SiGe Channel. IEEE Transactions on Electron Devices 60, 1884-1891, doi:10.1109/ted.2013.2258926 (2013). 7 Liow, T.-Y. et al. Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement IEEE Symposium on VLSI Technology Digest of Technical Papers 06 (2006). 8 Itokawa, H., Miyano, K., Oshima, Y., Mizushima, I. & Suguro, K. Carbon Incorporation into Substitutional Silicon Site by Molecular Carbon Ion Implantation and Recrystallization Annealing as Stress Technique in n-Metal–Oxide–Semiconductor Field-Effect Transistor. Japanese Journal of Applied Physics 49, 04DA05, doi:10.1143/jjap.49.04da05 (2010). 9 Koh, S.-M., Samudra, G. S. & Yeo, Y.-C. Carrier transport in strained N-channel field effect transistors with channel proximate silicon-carbon source/drain stressors. Applied Physics Letters 97, 032111, doi:10.1063/1.3465661 (2010). 10 Sadigh, B. et al. Large enhancement of boron solubility in silicon due to biaxial stress. Applied Physics Letters 80, 4738-4740, doi:10.1063/1.1484557 (2002). 11 Yu, M. H., Wang, L. T., Huang, T. C., Lee, T. L. & Chenga, H. C. The Strained-SiGe Relaxation Induced Underlying Si Defects Following the Millisecond Annealing for the 32 nm PMOSFETs. Journal of The Electrochemical Society 159, H243-H249, doi:10.1149/2.017203jes] (2012). 12 Osten, H. J., Griesche, J. & Scalese, S. Substitutional carbon incorporation in epitaxial Si 1−y C y alloys on Si(001) grown by molecular beam epitaxy. APPLIED PHYSICS LETTERS 74, 836-838 (1999). 13 Chang, H.-T., Lin, I. P., Twan, S.-C., Woon, W.-Y. & Lee, S.-W. Carbon re-incorporation in phosphorus-doped Si1−yCy epitaxial layers during thermal annealing. Journal of Alloys and Compounds 553, 30-34, doi:10.1016/j.jallcom.2012.10.158 (2013). 14 Kim, S.-D. & Woo, J. C. S. Advanced Source/Drain Engineering for Box-Shaped Ultrashallow Junction Formation Using Laser Annealing and Pre-Amorphization Implantation in Sub-100-nm SOI CMOS. IEEE TRANSACTIONS ON ELECTRON DEVICES 49, 1748-1754 (2002). 15 OLSON, G. L. & ROTH, J. A. KINETICS OF SOLID PHASE CRYSTALLIZATION IN AMORPHOUS SILICON (1988). 16 Woon, W. Y., Wang, S. H., Chuang, Y. T., Chuang, M. C. & Chen, C. L. Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth. Applied Physics Letters 97, 141906, doi:10.1063/1.3497195 (2010). 17 Hoong-Shing, W. et al. Silicon-Carbon Stressors With High Substitutional Carbon Concentration and In Situ Doping Formed in Source/Drain Extensions of n-Channel Transistors. IEEE Electron Device Letters 29, 460-463, doi:10.1109/led.2008.920274 (2008). 18 Ye, Z. et al. A study of low energy phosphorus implantation and annealing in Si:C epitaxial films. Semiconductor Science and Technology 22, 171-174, doi:10.1088/0268-1242/22/2/030 (2007). 19 Yanga, B. et al. Strain Loss in Epitaxial Si:C Films Induced by Phosphorus Diffusion The Electrochemical Society 16, 1021-1024 (2008). 20 Strane, J. W. et al. Precipitation and relaxation in strained Si, &JSi heterostructures J. Appl. Phys. 76, 3656-3668 (1994). 21 Chuang, Y.-T., Wang, S.-H. & Woon, W.-Y. Effect of impurities on thermal stability of pseudomorphically strained Si:C layer. Applied Physics Letters 98, 141918, doi:10.1063/1.3572339 (2011). 22 Powell, A. R., LeGoues, F. K. & Iyer, S. S. Formation of β‐SiC nanocrystals by the relaxation of Si1−yCy random alloy layers. Applied Physics Letters 64, 324-326, doi:10.1063/1.111195 (1994). 23 Fang, X. et al. Phosphorus-Doped p-Type ZnO Nanorods and ZnO Nanorod p-n Homojunction LED Fabricated by Hydrothermal Method. J. Phys. Chem. C 113, 21208-21212 (2009). 24 Nakahara, K. et al. Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Applied Physics Letters 97, 013501, doi:10.1063/1.3459139 (2010). 25 Ivanoff Reyes, P. et al. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Applied Physics Letters 101, 031118, doi:10.1063/1.4737648 (2012). 26 Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Applied Physics Letters 82, 733-735, doi:10.1063/1.1542677 (2003). 27 Lim, S. J., Kwon, S.-j., Kim, H. & Park, J.-S. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Applied Physics Letters 91, 183517, doi:10.1063/1.2803219 (2007). 28 Look, D. C. Recent advances in ZnO materials and devices. Materials Science and Engineering B80, 383-387 (2001). 29 Zhang, S. B., Wei, S. H. & Zunger, A. Intrinsicn-type versusp-type doping asymmetry and the defect physics of ZnO. Physical Review B 63, doi:10.1103/PhysRevB.63.075205 (2001). 30 Yan, Y., Li, J., Wei, S. H. & Al-Jassim, M. M. Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys Rev Lett 98, 135506, doi:10.1103/PhysRevLett.98.135506 (2007). 31 Xiu, F. X., Yang, Z., Mandalapu, L. J. & Liu, J. L. Donor and acceptor competitions in phosphorus-doped ZnO. Applied Physics Letters 88, 152116, doi:10.1063/1.2194870 (2006). 32 Mannam, R., Eswaran, S. K., DasGupta, N. & Rao, M. S. R. Zn-vacancy induced violet emission in p-type phosphorus and nitrogen codoped ZnO thin films grown by pulsed laser deposition. Applied Surface Science 347, 96-100, doi:10.1016/j.apsusc.2015.04.057 (2015). 33 Yao, B. et al. Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering. Journal of Applied Physics 99, 123510, doi:10.1063/1.2208414 (2006). 34 Li, J. et al. Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. Journal of Applied Physics 113, 193105, doi:10.1063/1.4805778 (2013). 35 Huang, Y.-J., Shih, M.-F., Chou, C.-P., Lo, K.-Y. & Chu, S.-Y. Fabrication of p-Type ZnO Films Grown on Arsenic-Implanted Silicon via Thermal Diffusion at Various Substrate Temperatures. ECS Journal of Solid State Science and Technology 1, P276-P278 doi:10.1149/2.018206jss (2012). 36 Yuan, M. et al. The point defect structure and its transformation in As-implanted ZnO crystals. Journal of Physics D: Applied Physics 45, 085103, doi:10.1088/0022-3727/45/8/085103 (2012). 37 Jeong, T. S. et al. Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals. Journal of Electronic Materials 43, 2688-2693, doi:10.1007/s11664-014-3136-z (2014). 38 Wang, M.-C. et al. Strained pMOSFETs with SiGe Channel and Embedded SiGe Source/Drain Stressor under Heating and Hot-Carrier Stresses IEEE 13, 371-374 (2013). 39 Kang, C. Y. et al. A Novel Electrode-Induced Strain Engineering for High Performance SOI FinFET utilizing Si (110) Channel for Both N and PMOSFETs. IEDM (2006). 40 Strane, J. W. et al. Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy. Journal of Applied Physics 79, 637, doi:10.1063/1.360806 (1996). 41 Mitchell, T. O., Hoyt, J. L. & Gibbons, J. F. Substitutional carbon incorporation in epitaxial Si1−yCy layers grown by chemical vapor deposition. Applied Physics Letters 71, 1688-1690, doi:10.1063/1.119794 (1997). 42 Liu, Y. et al. Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy VLSI 03, 44-45 (2007). 43 Ang, K.-W. et al. Strained n-MOSFET With Embedded Source/Drain Stressors and Strain-Transfer Structure (STS) for Enhanced Transistor Performance. IEEE Transactions on Electron Devices 55, 850-857, doi:10.1109/ted.2007.915053 (2008). 44 Hsieh, E. R. & Chung, S. S. The proximity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters 96, 093501, doi:10.1063/1.3340926 (2010). 45 Park, S. Y. et al. Carbon incorporation pathways and lattice sites in Si1−yCy alloys grown on Si(001) by molecular-beam epitaxy. Journal of Applied Physics 91, 5716-5727, doi:10.1063/1.1465122 (2002). 46 Guedj, C., Dashiell, M. W., Kulik, L., Kolodzey, J. & Hairie, A. Precipitation of β-SiC in Si1−yCy alloys. Journal of Applied Physics 84, 4631-4633, doi:10.1063/1.368703 (1998). 47 Kim, Y. J., Kim, T.-J., Kim, T.-K., Park, B. & Song, J. H. The Loss Kinetics of Substitutional Carbon in Si1-xCx Regrowth by Solid Phase Epitaxy. Jpn. J. Appl. Phys. 40, 773-776 (2001). 48 Goorsky, M. S. et al. Thermal stability of Si1−xCx/Si strained layer superlattices. Applied Physics Letters 60, 2758-2760, doi:10.1063/1.106868 (1992). 49 Fischer, G. G., Zaumseil, P., Bugiel, E. & Osten, H. J. Investigation of the high temperature behavior of strained Si1−yCy /Si heterostructures. Journal of Applied Physics 77, 1934-1937, doi:10.1063/1.358826 (1995). 50 Osten, H. J. et al. Strain relaxation in tensile-strained Si1-yCy layers on Si(001). Semicond. Sci. Technol. 11, 1678-1687 (1996). 51 Newman, S. P. C. a. R. C. The selective trapping of self-interstitials by interstitial carbon impurities in electron irradiated silicon. Semicond. Sci. Technol. 2, 691-694 (1987). 52 Werner, P., Eichler, S., Mariani, G., Kögler, R. & Skorupa, W. Investigation of CxSi defects in C implanted silicon by transmission electron microscopy. Applied Physics Letters 70, 252-254, doi:10.1063/1.118381 (1997). 53 Ku, K. C. et al. Effects of germanium and carbon coimplants on phosphorus diffusion in silicon. Applied Physics Letters 89, 112104, doi:10.1063/1.2347896 (2006). 54 Edelman, L. A., Jin, S., Jones, K. S., Elliman, R. G. & Rubin, L. M. Effect of carbon codoping on boron diffusion in amorphous silicon. Applied Physics Letters 93, 072107, doi:10.1063/1.2975833 (2008). 55 Boucaud, P. et al. Photoluminescence of strained Si1−yCy alloys grown at low temperature. Applied Physics Letters 66, 70-72, doi:10.1063/1.114186 (1995). 56 Zou, C. W. et al. Study of a nitrogen-doped ZnO film with synchrotron radiation. Applied Physics Letters 94, 171903, doi:10.1063/1.3125255 (2009). 57 Lin, B., Fu, Z. & Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters 79, 943-945, doi:10.1063/1.1394173 (2001). 58 Tian, R.-Y. & Zhao, Y.-J. The origin of p-type conduction in (P, N) codoped ZnO. Journal of Applied Physics 106, 043707, doi:10.1063/1.3195060 (2009). 59 Ryu, Y. R. et al. Synthesis of p-type ZnO films. Journal of Crystal Growth 216, 330-334 (2000). 60 Lu, J. G. et al. Control of p- and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters 89, 112113, doi:10.1063/1.2354034 (2006). 61 Xiu, F. X., Yang, Z., Mandalapu, L. J., Liu, J. L. & Beyermann, W. P. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Applied Physics Letters 88, 052106, doi:10.1063/1.2170406 (2006). 62 Tan, S. T. et al. p-type conduction in unintentional carbon-doped ZnO thin films. Applied Physics Letters 91, 072101, doi:10.1063/1.2768917 (2007). 63 Myers, M. A. et al. P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Applied Physics Letters 101, 112101, doi:10.1063/1.4751467 (2012). 64 Park, C. H., Zhang, S. B. & Wei, S.-H. Origin ofp-type doping difficulty in ZnO:The impurity perspective. Physical Review B 66, 073202, doi:10.1103/PhysRevB.66.073202 (2002). 65 Heo, Y. W., Ip, K., Park, S. J., Pearton, S. J. & Norton, D. P. Shallow donor formation in phosphorus-doped ZnO thin films. Applied Physics A 78, 53-57, doi:10.1007/s00339-003-2243-0 (2004). 66 Tabet, N., Faiz, M. & Al-Oteibi, A. XPS study of nitrogen-implanted ZnO thin films obtained by DC-Magnetron reactive plasma. Journal of Electron Spectroscopy and Related Phenomena 163, 15-18, doi:10.1016/j.elspec.2007.11.003 (2008). 67 Lyons, J. L., Janotti, A. & Van de Walle, C. G. Why nitrogen cannot lead to p-type conductivity in ZnO. Applied Physics Letters 95, 252105, doi:10.1063/1.3274043 (2009). 68 Liu, L. et al. p-Type conductivity in N-doped ZnO: the role of the N(Zn)-V(O) complex. Phys Rev Lett 108, 215501, doi:10.1103/PhysRevLett.108.215501 (2012). 69 Duan, L. et al. The synthesis and characterization of Ag-N dual-doped p-type ZnO: experiment and theory. Phys Chem Chem Phys 16, 4092-4097, doi:10.1039/c3cp53067a (2014). 70 Sui, Y. et al. Effects of (P, N) dual acceptor doping on band gap and p-type conduction behavior of ZnO films. Journal of Applied Physics 113, 133101, doi:10.1063/1.4798605 (2013). 71 Sui, Y. R. et al. Fabrication and characterization of P–N dual acceptor doped p-type ZnO thin films. Applied Surface Science 287, 484-489, doi:10.1016/j.apsusc.2013.10.010 (2013). 72 Yang, J.-J., Fang, Q.-Q., Wang, W.-N., Wang, D.-D. & Wang, C. Pulsed laser deposition of Li–N dual acceptor in p-ZnO:(Li, N) thin film and the p-ZnO:(Li, N)/n-ZnO homojunctions on Si(100). Journal of Applied Physics 115, 124509, doi:10.1063/1.4868515 (2014). 73 Oh Kim, C. et al. Effect of (O, As) dual implantation on p-type doping of ZnO films. Journal of Applied Physics 110, 103708, doi:10.1063/1.3662908 (2011). 74 Ma, Y. et al. Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy. Journal of Applied Physics 95, 6268-6272, doi:10.1063/1.1713040 (2004). 75 Armour, D. G. Ion implantation. Vacuum 37, 423-427 (1987). 76 The Stopping and Range of Ions in Matter http://srim.org. 77 W.E. Beadle, J. C. C. T., R.D. Plummer. Quick Reference Manual for Silicon Integrated Circuit Technology. (1985). 78 Mantl, S. et al. Strain relaxation of epitaxial SiGe layers on Si(100) improved by hydrogen implantation Nuclear Instruments and Methods in Physics Research B 147, 29-34 (1999). 79 NEWMAN, I. C. & WILLIS, J. B. VIBRATIONAL ABSORPTION OF CARBON IN SILICON J. Phys. Chem. Solids 26, 373-379 (1964). 80 KIMURA, T., KAGIYAMA, S. & YUGO, S. STRUCTURE AND ANNEALING PROPERTIES OF SILICON CARBIDE THIN LAYERS FORMED BY IMPLANTATION OF CARBON IONS IN SILICON. Thin Solid Films 81, 319-327 (1981). 81 Borghesi, A., Pivac, B., Sassella, A. & Stella, A. Oxygen precipitation in silicon. Journal of Applied Physics 77, 4169-4244, doi:10.1063/1.359479 (1995). 82 Oehrlein, G. S., Lindström, J. L. & Corbett, J. W. Carbon‐oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Applied Physics Letters 40, 241-243, doi:10.1063/1.93060 (1982). 83 Ha, C. P., Plummer, J. D. & Meindl, J. D. Thermal Oxidation of Heavily Phosphorus-Doped Silicon J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 125, 665-671 (1978). 84 Kulik, L. V., Hits, D. A., Dashiell, M. W. & Kolodzey, J. The effect of composition on the thermal stability of Si1−x−yGexCy/Si heterostructures. Applied Physics Letters 72, 1972-1974, doi:10.1063/1.121238 (1998). 85 Pawlak, B. J. et al. Suppression of phosphorus diffusion by carbon co-implantation. Applied Physics Letters 89, 062102, doi:10.1063/1.2234315 (2006). 86 Yeong, S. H. et al. Defect engineering by surface chemical state in boron-doped preamorphized silicon APPLIED PHYSICS LETTERS 91, 102112 (2007). 87 Deng, H. et al. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films 458, 43-46, doi:10.1016/j.tsf.2003.11.288 (2004). 88 Liu, X., Wu, X., Cao, H. & Chang, R. P. H. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 95, 3141-3147, doi:10.1063/1.1646440 (2004). 89 Xie, Y. et al. Enforced c-axis growth of ZnO epitaxial chemical vapor deposition films on a-plane sapphire. Applied Physics Letters 100, 182101, doi:10.1063/1.4709430 (2012). 90 Lin, H. et al. Characterization of m-plane ZnO thin film on γ-LiAlO2 (100) substrate by metal-organic chemical vapor deposition. Journal of Alloys and Compounds 467, L8-L10, doi:10.1016/j.jallcom.2007.12.021 (2009). 91 Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. & Steiner, T. Recent advances in processing of ZnO. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, 932, doi:10.1116/1.1714985 (2004). 92 Museur, L. et al. Modification of ZnO thin films induced by high-density electronic excitation of femtosecond KrF laser. Journal of the Optical Society of America B 31, 1351, doi:10.1364/josab.31.001351 (2014). 93 Look, D. C. & Claflin, B. P-type doping and devices based on ZnO. physica status solidi (b) 241, 624-630, doi:10.1002/pssb.200304271 (2004). 94 Barnes, T. M., Olson, K. & Wolden, C. A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Applied Physics Letters 86, 112112, doi:10.1063/1.1884747 (2005).
|