跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡政諺
研究生(外文):Jheng-Yan Cai
論文名稱(外文):Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell
指導教授:唐毓慧
指導教授(外文):Yu-Hui Tang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:44
中文關鍵詞:PC1D矽晶太陽能電池雙層電極太陽能電池太陽能電池模擬
外文關鍵詞:solar cell simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在近數十年以來,太陽能產業發展十分迅速,更被視為在未來最具發展性的能源之一。主要是因為太陽能取之不盡而且太陽能轉換成電能的過程中並不會排放溫室氣體。太陽能電池在市場上並不普遍,因為它的價格過於昂貴。我們的實驗的目標是效率在損失極小的條件之下,有效的降低成本。用銅替代部分銀,做成銅銀雙層電極,這是已知降低成本的方法之一。在整個模擬中,我們專注於前電極的部分。藉由改變電極的數量、高度和材料,來模擬太陽能電池的效率。一開始,我們採用論文[17]中與前電極無關的參數,接著使用PC1D來計算太陽能電池的電流和電壓數據。然後,用MATLAB對電流電壓數據進行單指數模型的擬合。擬和出來的參數分別是與前電極無關的短路電流和串聯電阻、飽和暗電流、理想因子、並聯電阻。之後,我們加入了前電極的參數[12],使用PYTHON計算太陽能電池的效率。然後我們藉由調整電極的數量來計算不同條數情況下的效率。我們可以進而找到最佳效率情況下的電極的數量。在雙層電極得模擬計算上,其過程和方法與單層電極大致上相同,僅增加了銅的參數到計算中而已。在雙層電極模擬過程中,我們模擬了銀的高度、銅的高度和效率之間的關係,以及增寬比和效率之間的關係。在不同增寬比的情況下,我們得到了其相對應的銀高和銅高的最佳組合,每一個最佳組合都是一個最佳效率點。將不同增寬比情下所得到的最佳效率做比較。找到最好的一個,它就是雙層電極的最佳效率。然後將單層電極與雙層電極做比較。計算電極截面積以比較銀和銅的用量。結果顯示,我們通過比較單層的電極與雙層電極,減少銀24.47%的用量和增加銅21.38%的用量,並且只有降低0.012%的效率。在國際金屬價格上,銀比銅貴了97倍,所以節省下的成本是非常可觀的。
最終,我們架構了一個結合了PC1D和電路模型的計算的工具,用來模擬矽晶太陽能電池和銅鍍雙層前電極的最佳厚度組合,並且能因應不同的實驗數據、參數,模擬出各自適合的結果。
In recent decades, the solar energy techniques grow very quickly. Because solar energy cannot exhaust greenhouse gas that is the main cause of greenhouse effect. Currently, the solar cell cannot be commonly employed since its price is still expensive. Our goal in this study is to greatly reduce the cost but only losing little efficiency. One solution is to replace a portion of silver front side metallization by copper.
In our simulation, we change number, height and composition of fingers to simulate solar cell efficiency. First, we obtained the parameters which are independent of fingers, and then used PC1D to calculate cell’s IV-data. Secondly, the single diode model is employed to obtain the short circuit current, the series resistance which are independent fingers, dark current, the ideal factor and the shunt resistances. Finally, once the finger’s electrical and structural parameters are included, the cell’s efficiency can be calculated.
For cupper-plated front side metallization, the simulation process is similar but considering electric and structural parameters of copper. We discussed the relations between silver height, copper height and efficiency; and the relation between widening ratio and efficiency. By comparing single layer finger with Cu-plated finger, we successfully reduce about 24.47% of Ag with additional 21.38% of Cu , while, only 0.012% of efficiency is losing. This reveals a promising reduction of cost in Si-based solar cell with Cu-platted front side metallization.
Finally, we propose a promising calculation tools, combining the PC1D and circuit model, to simulate the best combination of Si-based solar cell with Cu-platted front side metallization, as long as the real electrical and structural parameters implemented from experimental results.
Chapter 1. Introduction ............................. 1
Chapter 2. The theory of solar cell ................ 4
2.1 Intrinsic semiconductor .......... .............. 4
2.2 Extrinsic semiconductor.......................... 4
2.2.1 N-type ........................................ 5
2.2.2 P-type ........................................ 5
2.3 PN-Junction.. ................................... 6
2.3.1 Dark current .................................. 8
2.3.2 Light generated current........................ 9
2.4 Silicon-based solar cell ....................... 10
2.4.1 Structure ............ ....................... 10
2.4.2 Front Side Metallization ..................... 11
2.4.3 Recombination ................................ 14
2.4.4 Efficiency ................................... 16
2.4.5 Single diode model ........................... 17
Chapter 3. Simulation for Simulation Front Side Metallization ...................................... 19
3.1 Simulation Process ............................. 19
3.2 PC1D ........................................... 20
3.2.1 Reproduce the reference paper ................ 20
3.2.2 Concentration effect ......................... 21
3.3 Cu plated Finger simulation .................... 23
3.3.1 Reproduce the reference paper ................ 23
3.3.2 One Layer Finger Simulation .................. 24
3.3.3 Double Layer Finger Simulation ............... 26
Chapter 4. Conclusion .............................. 32
Chapter 5. References .............................. 33
[1]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳(2008)。《太陽能電池》臺北市五南圖書
[2] Bhubaneswari Paridaa et al., Renewable and Sustainable Energy Reviews, Vol.15, No.3,1625–1636, 2011
[3] Tatsuo Saga, NPG Asia Materials, Vol.2, No.3, 96–102 , 2010
[4] Martin A. Green et al., PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, Vol.17, No.1, 85–94, 2009
[5] Masayuki Arimochi et al., Japanese Journal of Applied Physics 54, 056601, 2015
[6] Harald Hoppe and Niyazi Serdar Sariciftci, Organic solar cells: An overview, Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, 2004
[7] Askari. Mohammad Bagher, Renewable and Sustainable Energy, Vol. 2, No. 3, 85-90, 2014
[8] Mingzhen Liu1 et al., Nature 501,395–398, 19 September 2013
[9] Martin A. Green et al., Nature Photonics 8, 506–514, 2014
[10] London Metal Exchange website (https://www.lme.com/Metals/Precious-metals/LME-Silver#tabIndex=0)
[11]施敏、李明逵 (2013)。《半導體元件物理與製作技術》曾俊新竹市交 。《半導體元件物理與製作技術》曾俊新竹市交 。《半導體元件物理與製作技術》曾俊新竹市交 大出版社
[12] Y. S. Khoo et al., IEEE J-PV, 3, 716-722, 2013
[13] PVEDUCATION.ORG website (http://www.pveducation.org/)
[14] PV LIGHTHOUSE website (https://www.pvlighthouse.com.au/)
[15] A. R. Burgers, New Metallisation Patterns and Analysis of Light Trapping for Silicon Solar Cells, 2005, Energieonderzoek Centrum Nederland
[16] A. Mette, "New concepts for front side metallization of industrial silicon solar cells",Ph.D. dissertation, Univ. Freiburg, 2007
[17] M. Belarbi et al., AEIJ, Vol.1, No.3, 1-10, 2014
[18] 李幼真,陳勇民 (2012)。《晶硅衬底参数对太阳电池输出特性的影响 》。中国有色金属学报
[19] S. Saravanan, Ramesh Babu N.,Renewable and Sustainable Energy Reviews,57,192–204,2016
[20] M. A. Hasan, S. K. Parida, Renewable and Sustainable Energy Reviews, 60, 75-83, 2016
[21] D. Dsilva Winfred Rufuss et al., Renewable and Sustainable Energy Reviews, 63, 464-496, 2016
[22] http://www.zhinst.com/blogs/jamesw/measuring-the-i-v-characteristic-of-pn-junction-devices-with-hf2li-lock-in-amplifier/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top