跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳智方
研究生(外文):Jr-Fang Liou
論文名稱:考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究
論文名稱(外文):Numerical Study of Maximum Extractable Energy from High Power Pulsed Fiber Laser Amplifier considering Stimulated Inelastic Scattering
指導教授:陳仕宏
指導教授(外文):Shih-Hung Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:受激非彈性散射數值模擬光纖雷射放大器
外文關鍵詞:Stimulated Inelastic ScatteringNumerical StudyFiber Laser Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用數值模擬的方法研究高功率脈衝雷射中,在已經抑制受激
拉曼散射(stimulated Raman scattering)的情況下,研究窄線寬脈衝下受激布里淵散射(stimulated Brillouin scattering)對於最大可擷取能量的影響。
在此數值研究中,我們建構了包含受激拉曼散射與受激布里淵散射的
一維速率-傳輸方程式(rate-propagation equation)的數值模型,以模擬的方式,發現在脈衝線寬為 0.02 奈米的情況下,即使抑制了受激拉曼散射,仍然會有部分的能量轉移到受激布里淵散射上。對於需要使用窄線寬脈衝的實驗而言,所輸出的能量勢必受到受激布里淵效應的影響,本論文給出了在脈衝線寬為 0.02 奈米的情況下,改變脈衝重複率與光纖長度所得到的最大可擷取能量,並得出不同脈衝線寬下,以改變光纖長度抑制受激布里淵散射的最大可擷取能量。
此研究呈現了高功率光纖雷射脈衝放大器最佳化的量化參數條件。研
究結果可直接用在實驗上設計且優化高功率、高能量脈衝光纖雷射放大器。另一方面,此光纖雷射脈衝放大器數值模型,未來可進一步加入多橫模及其他不同的非線性效應,用於研究光纖中能量頻譜展寬的研究。
A numerical study of maximum extractable energy from high power pulsed fiber laser amplifier with considerations of stimulated Raman scattering(SRS) and stimulated Brillouin scattering(SBS) is presented. Based on rate-propagation equations, a one-dimensional convection code is constructed for calculating the maximum extractable energy in fiber laser amplifiers. In the thesis, we extended the numerical model, which is based on rate-propagation equation, to study the maximum extractable energy in fiber laser amplifiers. Simulation results show
that even the SRS is suppressed, A part of energy turns into SBS when linewidth of signal is 0.02 nm. For those experiments need to fix linewidth of signal, the output energy must be affected by SBS. We get the maximum extractable energy by changing repetition rate of signal and fiber length with 0.02 nm linewidth of signal, and get maximum extractable energy in different linewidth of signal. The numerical model used in the study can be applied to study the nonlinear effects and the spectral broadening in high power pulsed fiber laser amplifier and provide experimental designs of a practical high-power and high-energy pulsed fiber amplifier.
摘要 ............................................................................................................. i
Abstract ...................................................................................................... ii
致謝 ........................................................................................................... iii
圖目錄 ........................................................................................................ v
第一章-緒論 ............................................................................................ 1
1.1 光纖放大器的歷史 ............................................................................... 1
1.2 動機 ....................................................................................................... 2
第二章-受激非彈性散射理論與數值模型 ............................................ 4
2.1 光纖模型簡介與光纖波導電磁場分析 .............................................. 4
2.2 受激非彈性散射理論 ........................................................................... 6
2.3 拉曼及布里淵閾值 ............................................................................... 8
2.4 考慮非彈性散射之摻鐿光纖數值模型 ............................................. 10
第三章-模擬結果 .................................................................................. 19
3.1 在抑制受激拉曼散射的情況下考慮受激布里淵對最大可擷取能量
的影響 ................................................................................................. 19
3.2 改變脈衝重複率與光纖長度抑制受激布里淵效應 ......................... 25
第四章-結論與未來展望 ...................................................................... 34
參考文獻 .................................................................................................. 35
附錄 A ...................................................................................................... 37
附錄 B ...................................................................................................... 38
35
參考文獻
[1] Charles J. Koester and Elias Snitzer, “Amplification in a Fiber Laser”, Applied
Optics, Vol. 3, Issue 10, pp. 1182-1186, 1964.
[2] K. C. Kao and G. A. Hockham, “Dielectric Fiber Surface Waveguide for
Optical Frequencies,” Proc. IEE, Vol. 113, pp. 1151-1158, (1966.
[3] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-
clad, offset core Nd fiber laser,” in Optical Fiber Sensors, 1998 OSA Technical
Digest Series (Optical Society of America, 1998, paper PD5.
[4] Y . Wang and H. Po, “Dynamic characteristics of double-clad fiber amplifiers
for high-power pulse amplification,” J. Lightwave Technol. 21, 2262–2270,
2003.
[5] W. P. Urquhart, et al., “Effective core area for stimulated Raman scattering in
single-mode optical fibers,” Proc. IEEE, vol. 132, pp. 201–204, 1985.
[6] Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse
amplifiers,” IEEE J. Quantum Electron., vol. 41, no. 6, pp. 779–788, 2005.
[7] Z. Zhang, et al., “Numerical analysis of stimulated inelastic scatterings in
ytterbium-doped double-clad fiber amplifier with multi-ns-duration and multi-
hundred-kW peak-power output,” Optics Communications 282 1186–1190,
2009.
[8] Y. Sintov, et al. “Extractable energy from ytterbium-doped high-energy pulsed
fiber amplifiers and lasers,” J. Opt. Soc. Am. B 23, 218–230 ,2006.
[9] Alejandro L. “Garcia, Numerical Methods for Physics 2 nd ”, 2000.
[10] C. V. Raman, Indian J. Phys. 2, 387, 1928.
[11] R. G. Smith, “Optical power handling capacity of low loss optical fibers as
determined by Stimulated Raman and Brillouin Scattering”Appl. Opt 11,
2489, 1972.
[12] G. P. Agrawal, “Nonlinear Fiber Optics 5 th ”, Academic, 2013.
[13] Paschotta R, Nilsson J, Tropper A.C. etc., Ytterbium-doped fiber amplifier J,
IEEE Journal of Quantum Electronics, Vol. 33(7), 1049-1056., 1997.
[14] R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, Electron. Lett. 22, 1011,
1986.
[15] R. Billington, “Measurement Methods for Stimulated Raman and Brillouin
Scattering in Optical Fibers”, National Physical Laboratory Report COEM
31,1999.
[16] 張宜豐,“考慮受激拉曼散射下多模脈衝光纖雷射放大器之最大可擷取
能量的數值模擬研究”, 國立中央大學, 2014
[17] In private communication with Dr. J. Koponen from Liekki [18] R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin
Scattering and Coherent Generation of Intense Hypersonic Waves”, Phys.
Rev. Lett. 12, 592, 1964.
[19] J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a
coiled multimode fiber amplifier,” Opt. Lett., vol. 25, pp. 442–444, 2000.
[20] Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury, “Stimulated
Brillouin scattering in optical fibers,” AOP2, 1–59, 2010
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top