(18.207.129.82) 您好!臺灣時間:2021/04/19 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:滕人傑
研究生(外文):Jen-chieh Teng
論文名稱(外文):Three Essays on Industrial Network Analysis
指導教授:徐之強徐之強引用關係
學位類別:博士
校院名稱:國立中央大學
系所名稱:經濟學系
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:105
中文關鍵詞:投入產出分析網絡結構產業上游度指數中間財交易總體經濟波動
外文關鍵詞:input–output analysisnetwork structureindustrial upstreamnessintermediate transactionsAggregate Fluctuations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產業之間的網絡結構(network structure)分析是近年文獻日益關注的主題。透過投入產出表中投入產出交易的進一步研究,可以將投入產出表的應用範圍擴大到產業間網絡結構的各項特徵的實證應用。
本論文第二章探討產業網絡結構對總體經濟波動的影響。傳統文獻多關注在產業間投入產出連結所引導的向前及向後關聯效果。本章透過將向前及向後關連與有向圖(directed graph)的概念結合,建立了在產業網絡關係中衡量產業做為中間財供給者權重的出度指標(outdegree index),以及衡量產業做為中間財消費者權重的入度指標(indegree index)。在眾多針對總體經濟波動的文獻研究中,網絡效果是最新的研究發現。透過上述出度指標及入度指標的衡量,並參考最新文獻的理論架構,可以將網絡效果對總體經濟的波動影響量化分析。本文使用的資料為世界投入產出資料庫(World Input–Output Database)中,各開發中與已開發國家的35部門產業的投入產出表。實證結果顯示,在一個經濟體的網絡結構中,若某些產業的中間財供給者權重越大,由供給方驅動的網絡效果對總產出及投資波動有正向效果。若某些產業的中間財消費者權重越大,由消費方驅動的網絡效果對總產出、投資及最終消費波動有正向效果。
第三章探討產業的網絡結構與產業價值鏈的關係。最新文獻將投入產出中的向前關聯交易,透過原始數學公式的引申,提出了產業上游度(industrial upstreamness)的衡量指標。上游度指標衡量某產業與所屬經濟體系中所有最終財消費的中間交易距離。若某產業上游度指標值越高,代表該產業距離各個最終財消費的距離越遠,也就是該產業所貢獻的直接加間接中間財投入價值鏈越長。實證結果顯示,若某產業的中間財供給者權重越大,該產業的上游度指標值越高;也就是在網絡建構的產業價值鏈中,處於越上游的位置。反之,若某產業的中間財消費者權重越大,該產業的上游度指標值越低;也就是在產業價值鏈中處於越下游的位置。然而,若以個別產業的跨國比較來分析,不同產業的網絡結構與產業價值鏈的關係,也根據各產業中間投入結構的不同,而呈現出與整體不同的樣貌。譬如,各國電子及光學設備產業的跨國比較顯示,無論該產業在各國的網絡結構中,是屬於中間供給權重值越高或中間消費權重值越高的情況,該產業都會朝向該國產業價值鏈的上游端移動。
第四章探討各國研究發展活動與中間產品跨國交易的關聯。最新文獻顯示,兩國之間的知識擴散,可透過兩國之間的中間財貿易達成。同時,產業發展的實際經驗也顯示,透過增加研發能力達成進口替代的開發中國家,替代過程中對更高階的關鍵零組件產品與生產設備的進口需求也會增強。本章透過各國的製造業研發密集度與中間產品進口資料的兩階段迴歸分析,在考慮內生性的影響下,發現各製造業部門使用於自身的進口中間投入,與該部門的國內研發密集度有顯著的正向關聯。此一發現也間接證實跨國間知識擴散與中間財跨國貿易之間的確存在一般性的關聯。
This dissertation elucidates the novel aspects of network analysis from both the input–output linkage and value-chain perspectives.
Chapter 2 discusses the effect of the industrial network on aggregate fluctuations at the country level. The input–output linkages between industries construct a network system. By combining the concepts of backward and forward linkages with the directed graph, I provide novel outdegree and indegree indices to exhibit industry’s network effect on aggregate fluctuations. Within the literature, researchers have discussed several hypotheses regarding the mechanism between aggregate fluctuations and micro-level shocks; the network effect is one of the newest theories in this field. In this dissertation, I provide cross-country empirical evidence demonstrating that the structure of the industrial network can affect aggregate fluctuations by using World Input–Output Database (WIOD). I further distinguish between the demand- and supply-driven network effects on various aggregate fluctuations, and obtain several findings regarding the network effects on different aggregate fluctuations, such as the fluctuations of investment and consumption.
In Chapter 3, the characteristics of industrial upstreamness are described. Input–output linkages reveal information about the value chain or the “upstreamness” of each industry and here I determine the relationship between upstreamness and degree indices and other variables regarding the structure of the production network among domestic industries. For example, considering both the direct and indirect effects, when one industry plays a stronger role as a “supplier” of intermediate goods and services in the network, it tends to have an upper position in the value chain. Conversely, if one industry has more weight as a “consumer” in the network system, it tends to have a lower position in the value chain. However, the relationships regarding the value chain position and network connection between different industries are various under a country-by-country comparison. For example, for the industry of electrical and optical equipment, intensive connections for both a supplier and consumer of intermediate inputs are related to an upper position in the value chain.
In Chapter 4, I turn to the topic of R&D and testify the effect of imported intermediate inputs on domestic R&D intensity. Empirical evidence is demonstrated that intermediate imports have a positive effect on the domestic R&D intensity under a wide range of cross-country and cross-industry comparison. Furthermore, the 2SLS empirical evidence in Chapter 4 mainly specifies the imported self-use intermediate inputs for manufacturing industries. The finding also indirectly supports the hypothesis that international diffusion of knowledge is systematically related to cross-border trade relationships.
摘 要 i
Abstract iii
誌 謝 辭 v
Contents vi
List of Tables viii
List of Figures ix
1. Introduction 1
2. The Network Effect on Aggregate Fluctuations 5
2.1 Introduction 5
2.2 The Theoretical Framework and Index measurement 7
2.2.1 The Concept of Network Effects on Aggregate Fluctuation 7
2.2.2 The Measurement of Industrial Network Structure 10
2.3 Data and Regression Specification 16
2.3.1 The Relationship between the Network Structure and GDP Fluctuations 16
2.3.2 The Studies on Aggregate Volatility and Its Source 18
2.3.3 Data and the Regression Specification 19
2.4 Empirical Results of Network Effects on Aggregate Fluctuations 24
2.4.1 Empirical Results and Robustness 24
2.4.2 Further Issues about Network Effects on Aggregate Fluctuations 30
2.5 Conclusions 37
3. The Relationship between Industrial Upstreamness and Network Structure 39
3.1 Introduction 39
3.2 Theoretical Review 42
3.2.1 Upstreamness and the Decay of Input Coefficient 42
3.2.2 Relationship between Upstreamness and Degree Indices 48
3.3 Data and Regression Model 50
3.3.1 Industrial Upstreamness Data Summary 50
3.3.2 Regression Model and Data Description 55
3.4 Empirical Results 64
3.4.1 Results of Basic Models 64
3.4.2 Results of Net Degree Effect 65
3.5 Conclusion 67
4. The Effect of Intermediate Inputs on Domestic R&D Intensity 69
4.1 Introduction 69
4.2 Data Description and Regression Model 71
4.3 Empirical Results 78
4.4 Conclusion 81
5. Conclusion 82
Reference 84
Appendix A: the WIOD industry classification 89
Appendix B: the WIOD and OECD STAN Industrial classification concordance 90
Appendix C: the WIOD and OECD STAN Industrial classification concordance for R&D intensity 91
〔1〕Hirschman, A. O., The strategy of Economic Development, Yale University Press, 1958.
〔2〕Cella, G., “The input–output measurement of interindustry linkages”, Oxford Bulletin of Economics and Statistics, 46(1), pp.73-84, 1984.
〔3〕Chenery H. B. and T. Watanabe, “International Comparisons of the Structure of Production”, Econometrica, 26(4), pp. 487-521, 1958.
〔4〕Yotopoulos P. A. and J. B. Nugent, “A Balanced Growth Version of the Linkage Hypothesis: A Test”, The Quarterly Journal of Economics, 87(2), pp. 157-171, 1973.
〔5〕Bartelsman, E. J., R. J. Caballero and R. K. Lyons, “Customer- and Supplier-Driven Externalities”, The American Economic Review, 84(4), pp. 1075-1084, 1994.
〔6〕Lucas, R., “Understanding Business Cycles”, Carnegie-Rochester Conference Series on Public Policy, 5, pp. 7-29, 1977.
〔7〕Long, J. and C. Plosser, “Real Business Cycles”, Journal of Political Economy, 91, pp. 39-69, 1983.
〔8〕Shea, J., “Complementarities and Comovements”, Journal of Money, Credit, and Banking, 34, pp. 412-433, 2002.
〔9〕Conley, T. and B. Dupor, “A Spatial Analysis of Sectoral Complementarity”, Journal of Political Economy, 111(2), pp. 311-352, 2003.
〔10〕Horvath, M., “Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Sectoral Shocks”, Review of Economic Dynamics, 1, pp. 781-808, 1998.
〔11〕Horvath, M., “Sectoral Shocks and Aggregate Fluctuations”, Journal of Monetary Economics, 45, pp. 69-106, 2000.
〔12〕Gabaix, X., “The Granular Origins of Aggregate Fluctuations”, Econometrica, 79(3), pp. 733-772, 2011.

〔13〕Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi, “The Network Origins of Aggregate Fluctuations”, Econometrica, 80, pp. 1977-2016, 2012.
〔14〕Schweitzer, F., G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, and D. R. White, “Economic Networks: The New Challenges”, Science, 325, pp. 422-425, 2009.
〔15〕Ghosh, S. and J. Roy, “Qualitative input–output Analysis of the Indian Economic Structure”, Economic Systems Research, 10(3), pp.263-273, 1998.
〔16〕Gabaix, X. and R. Ibragimov, “Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents”, Journal of Business & Economic Statistics, 29(1), pp. 24-39, 2011.
〔17〕Clauset, A., C. R. Shalizi, and M. E.J. Newman, “Power-Law Distributions in Empirical Data”, SIAM Review, 51, pp. 661-703, 2009.
〔18〕Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. and de Vries, G. J., “An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production”, Review of International Economics, 23, pp. 575-605, 2015.
〔19〕McConnell, M. and G. Perez-Quiros, “Output Fluctuations in the United States: What Has Changed since the Early 1980’s?” American Economic Review, 90(5), pp. 1464-1476, 2000.
〔20〕Blanchard, O. and J. Simon, “The Long and Large Decline in U.S. Output Volatility”, Brookings Papers on Economic Activity, No.1, H.W. Wilson Company, 2001.
〔21〕Stock, J. and M. Watson, “Has the Business Cycle Changed and Why?” NBER Working Paper, No. 9127, 2002.
〔22〕Comin, D. and S. Mulani, “Diverging Trends in Aggregate and Firm Volatility”, The Review of Economics and Statistics, 88(2), pp. 374-383, 2006.
〔23〕Ramey, G. and V. A. Ramey, “Cross-Country Evidence on the Link between Volatility and Growth”, American Economic Review, 85(5), pp. 1138-1151, 1995.
〔24〕Head, A. C., “Country Size, Aggregate Fluctuation, and International Risk Sharing”, Canadian Journal of Economics, 28, pp. 1096-1119, 1995.
〔25〕Karras, G. and F. Song, “Sources of Business-Cycle Volatility: An Exploratory Study on a Sample of OECD Countries”, Journal of Macroeconomics, 18(4), pp. 621-637, 1996.
〔26〕Sutherland, A., “Financial Market Integration and Macroeconomic Volatility”, Scandinavian Journal of Economics, 98(4), pp. 521-539, 1996.
〔27〕Kraay, A. and J. Ventura, “Trade Integration and Risk Sharing”, European Economic Review, 46, pp. 1023-1048, 2002.
〔28〕Kose, M. A., E. S. Prasad, and M. E. Terrones, “Financial Integration and Macroeconomic Volatility”, IMF Staff Papers, 50(Special Issue), pp. 119-142, 2003.
〔29〕Wolf, H., “Accounting for Consumption Volatility Differences”, IMF Staff Papers, 51(Special Issue), pp. 109-125, 2004.
〔30〕Kose, M. A., E. S. Prasad, and M. E. Terrones, “How Do Trade and Financial Integration Affect the Relationship between Growth and Volatility?” Journal of International Economics, 69, pp. 176-202, 2006.
〔31〕Cavallo, E. and J. A. Frankel, “Dose Openness to Trade Make Countries More Vulnerable to Sudden Stops, or Less? Using Gravity to Establish Causality”, Journal of International Money and Finance, 27, pp. 1430-1452, 2008.
〔32〕Easterly, W. and R. Levine, “Tropics, Germs, and Crops: How Endowments Influence Economic Development”, Journal of Monetary Economics, 50, pp. 3-39, 2003.
〔33〕Mobarak, A. M., “Democracy, Volatility, and Economic Development”, the Review of Economics and Statistics, 87(2), pp. 348-361, 2005.
〔34〕Acemoglu, D., S. Johnson, J. Robinson, and Y. Thaicharoen, “Institutional Causes, Macroeconomic Symptoms: Volatility, Crises and Growth”, Journal of Monetary Economics, 50, pp. 49-123, 2003.
〔35〕Carvalho, V. M. and X. Gabaix, “The Great Diversification and Its Undoing”, American Economic Review, 103(5), pp. 1697-1727, 2013.
〔36〕Acemoglu, D. and F. Zilibotti, “Was Prometheus Unbound by Chance? Risk, Diversification and Growth”, Journal of Political Economy, 105, pp. 709-751, 1997.
〔37〕Mendoza, E., “The Terms of Trade, the Real Exchange Rate, and Economic Fluctuations”, International Economic Review, 36, pp. 101-137, 1995.
〔38〕Denizer, C., M. Iyigun, and A. Owen, “Finance and Macroeconomic Volatility”, Contributions to Macroeconomics, 2, pp. 1-30, 2002.
〔39〕Gali, J., “Government Size and Macroeconomic Stability”, European Economic Review, 38, pp. 117-132, 1994.
〔40〕Rodrik, D., “Why Do More Open Economies Have Bigger Government?” Journal of Political Economy, 106(5), pp. 997-1032, 1998.
〔41〕Yoon, J., “The Co-movement of Inflation and the Real Growth of Output”, the Journal of the Korean Economy, 7(2), pp. 213-229, 2006.
〔42〕Slater, P. B., “The Network Structure of the United States Input–output Table”, Empirical Economics, 3(1), pp. 49-70, 1978.
〔43〕Holub, H. W. and H. Schnabl, “Qualitative input–output analysis and structural information”, Economic Modelling, 2(1), pp. 67-73, 1985.
〔44〕Schnabl, H., “The Evolution of Production Structures, Analyzed by a Multi-layer Procedure”, Economic Systems Research, 6(1), pp. 51-68, 1994.
〔45〕Aroche-Reyes, F., “Important Coefficients and Structural Change: a Multi-Layer Approach”, Economic Systems Research, 8(3), pp. 235-247, 1996.
〔46〕Aroche-Reyes, F., “A Qualitative Input–output Method to Find Basic Economic Structures”, Papers in Regional Science, 82, pp. 581-590, 2003.
〔47〕Antràs, P., D. Chor, T. Fally and R. Hillberry, “Measuring the Upstreamness of Production and Trade Flows”, American Economic Review, 102(3), pp. 412-416, 2012.
〔48〕Antràs, P. and D. Chor, “Organizing the Global Value Chain”, Econometrica, 81(6), pp. 2127-2204, 2013.

〔49〕Beamon, B. M., “Supply Chain Design and Analysis: Models and Methods”, International Journal of Production Economics, 55(3), pp. 281-294, 1998.
〔50〕Lazzarini, S. G., F. R. Chaddad and M. L. Cook, “Integrating Supply Chain and Network Analysis: the Study of Netchains”, Journal of Chain and Network Science, 1(1), pp. 7-22, 2008.
〔51〕Wasserman, S. and K. Faust, Social Network Analysis, Cambridge University Press, Cambridge, 1994.
〔52〕Burt, R., Structural Holes, Harvard University Press, Cambridge, 1992.
〔53〕Nohria, N., “Introduction: is a network perspective a useful way to studying organizations?” Networks and Organizations, Harvard University Press, Boston, 1992.
〔54〕Romer, Paul M., “Growth Based on Increasing Returns Due to Specialization”, American Economic Review, 77(2), pp. 56-62, 1987.
〔55〕Coe, D. and E. Helpman, “International R&D Spillovers”, European Economic Review, 39, pp. 859-887, 1995.
〔56〕Keller, W., “Are international R&D Spillovers Trade-Related? Analyzing Spillovers among Randomly Matched Trade partners”, European Economic Review, 42, pp. 1469-1481, 1998.
〔57〕Fracasso, A. and G. V. Marzetti, “International Trade and R&D Spillovers”, Journal of International Economics, 96(1), pp. 138-149, 2015.
〔58〕Terleckyj, N., Effects of R&D on the Productivity Growth of Industries: An Exploratory Study, National Planning Association, Washington DC, 1974.
〔59〕Terleckyj, N., Direct and Indirect Effects of Industrial Research and Development on the Productivity Growth of Industries, J.N. Kendrick & B.N. Vaccara (eds.), University of Chicago Press, 1980.
〔60〕Grossman, G. and E. Helpman, Innovation and Growth in the Global Economy, MIT Press, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔