跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂紹鵬
研究生(外文):Shao-Peng Lu
論文名稱(外文):Detecting Road Conditions in Front of The Vehicle Using Off-The-Shelf Camera
指導教授:孫敏德
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:61
中文關鍵詞:車道線前車偵測
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
隨著公路運輸的發展,使人們能夠自行駕車前往目的地。然而不幸的是,這卻同樣導致了交通事故數量的增加。高級輔助駕駛系統的設計宗旨是希望能夠警示駕駛人潛在的危險,許多的駕駛輔助系統是基於車輛未來路徑的預測為基礎所設計。當車輛行駛於道路上,道路上的情況,包含前方道路趨勢以及與前方車輛之間的距離,是能夠影響車輛未來路徑的重要因素。這些道路資訊能夠藉由裝置於車內的攝影機拍攝所得。在這篇論文中,我們提出了一種影像處理系統,用以擷取出拍攝影像中的道路資訊。這個系統由兩種演算法所組成,彎道偵測演算法,以及距離轉換演算法。首先,我們利用彎道偵測演算法進行車道線的偵測,並計算出消失點的位置,接著再通過消失點的位置判斷出道路的趨勢。而距離轉換演算法則是用於當影像中偵測到實驗車前方的車輛,該演算法將實驗車與前方車輛之間的距離,轉換成現實世界的距離。通過分析與實驗,結果顯示我們提出的系統相較於基準演算法有較高的準確率。
The development of road transportation makes it easier for people to drive their vehicles. Unfortunately, it also causes the increasing number of traffic accidents. Advanced driver assistance systems, which in many ways is based on the future trajectory prediction of the vehicle, are developed to alert the driver for potential dangers. Road conditions, including road geometry and the distance between lead vehicle and host vehicle, are important factors in improving accuracy of future trajectory prediction. The road conditions can be obtained by the camera affixed in the vehicle. In this thesis, we propose a image processing system, which includes a curve detection algorithm (CDA) and a distance conversion (DC) algorithm, to obtain these road conditions from the image. First, CDA detects the lane stripes and calculates the vanishing point. The road trend can then be identified according to the location of the vanishing point. DC is used to convert the distance between the lead and host vehicles in the image to the real distance. Through analyses and experiments, it is shown that the proposed system achieves a higher precision than the baseline algorithms.
1 Introduction 1
2 RelatedWork 4
2.1 Front Car Detection and Car Distance Calculation . . . . . . . . . . . . . . 4
2.2 Lane Detection and Vanishing Point Detection . . . . . . . . . . . . . . . . 5
2.3 Path Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Preliminary 10
3.1 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Canny Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Gaussian Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Haar-like Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Exponential Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 System Design 18
4.1 The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Curve Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Feature Extraction and Validation . . . . . . . . . . . . . . . . . . . 21
4.2.3 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Vehicle Detection and Distance Calculation . . . . . . . . . . . . . . . . . . 25
4.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Feature Extraction and Validation . . . . . . . . . . . . . . . . . . . 26
4.3.3 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Performance 30
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Simulation Configuration . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Conclusions 41
[1] 2016 taoyuan bus fire. https://en.wikipedia.org/wiki/2016_Taoyuan_bus_fire.
[2] Adaboost. https://en.wikipedia.org/wiki/AdaBoost.
[3] Advanced driver-assistance systems. https://en.wikipedia.org/wiki/Advanced_driver-assistance_systems.
[4] Artificial neural networks. https://en.wikipedia.org/wiki/Artificial_neural_network.
[5] Collision avoidance system. https://en.wikipedia.org/wiki/Collision_avoidance_system.
[6] Dempstershafer theory. https://en.wikipedia.org/wiki/Dempster-Shafer_theory.
[7] Digital maps. http://www.lib.cam.ac.uk/collections/departments/maps/digital-maps.
[8] Edlines. http://ceng.anadolu.edu.tr/cv/EDLines/.
[9] Exponential moving average. https://en.wikipedia.org/wiki/Moving_average.
[10] Extended kalman filter. https://en.wikipedia.org/wiki/Extended_Kalman_filter.
[11] Gaussian mixture model. https://en.wikipedia.org/wiki/Mixture_model.
[12] Gaussian smoothing. http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.
[13] Global positioning system. https://en.wikipedia.org/wiki/Global_Positioning_System.
[14] Hough transform. http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html.
[15] Inertial measurement unit. https://en.wikipedia.org/wiki/Inertial_measurement_unit.
[16] Kalman filter. https://en.wikipedia.org/wiki/Kalman_filter.
[17] Linear regression. https://en.wikipedia.org/wiki/Linear_regression.
[18] Logitech web camera spectification. http://support.logitech.com/en_us/product/quickcam-sphere-af/specs.
[19] Morphological image processing. https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm.
[20] Opencv. https://en.wikipedia.org/wiki/OpenCV.
[21] Regulation: Assistance to upgrade vehicle safety facilities. https://www.mvdis.gov.tw/webMvdisLaw/LawArticle.aspx?LawID=I0135000&KWD1=.
[22] traffic accident 20160623. http://www.ettoday.net/news/20160623/721512.htm.
[23] P. Cerri A. Broggi and P.C. Antonello. Multi-resolution vehicle detection using artificial vision. In IEEE Intelligent Vehicles 2004 Symposium, pages 310–314, 2004.
[24] Rodrigo Adamshuk, Joo H. Z. Neme David Carvalho, Sergio Okida Erick Margraf, Angelo Tusset, Max M. Santos, Rodrigo Amaral, Artur Ventura, and Saulo Car valho. On the applicability of inverse perspective mapping for the forward distance estimation based on the hsv colormap. In Industrial Technology (ICIT), 2017 IEEE International Conference on, 2017.
[25] Arne Bartels, Marc-Michael Meinecke, and Simon Steinmeyer. Lane Change Assis tance, pages 729–757. Springer London, London, 2012.
[26] Cihan Topal Burak Benligiray and Cuneyt Akinlar. Video-based lane detection using a fast vanishing point estimation method. In Multimedia (ISM), 2012 IEEE International Symposium on, 2012.
[27] J Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679–698, June 1986.
[28] Jie-Qi Chen and Shen-Fu Hsiao. Lane-based front vehicle detection and its acceleration. 2013.
[29] A. P. Dempster. A generalization of bayesian inference (with discussion). Journal of the Royal Statistical Society, Series B: Methodological, 30:205–247, 1968.
[30] Duan Jianmin Gao Dezhi, Li Wei and Zheng Banggui. A practical method of road detection for intelligent vehicle. In IEEE International Conference on Automation and Logistics, pages 980–985, 2009.
[31] Rafael Grompone von Gioi, Jrmie Jakubowicz, Jean-Michel Morel, and Gregory Randall. LSD: a Line Segment Detector. Image Processing On Line, 2:35–55, 2012.
[32] Tomas Henriksson. Driver assistance systems with focus on automatic emergency brake. 2011.
[33] Toan Minh Hoang, Hyung Gil Hong, Husan Vokhidov, and Kang Ryoung Park. Road lane detection by discriminating dashed and solid road lanes using a visible light camera sensor. Sensors, 16(8), 2016.
[34] C. Hoffmann. Fusing multiple 2d visual features for vehicle detection. In IEEE IntelligentVehicles Symp., pages 406–411, 2006.
[35] Adam Houenou, Philippe Bonnifait, V´eronique Cherfaoui, and Yao Wen. Vehicle Trajectory Prediction based on Motion Model and Maneuver Recognition. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pages 4363–4369, Tokyo, Japan, November 2013.
[36] Ling-Yuan Hsu and Tsung-Lin Chen. Vehicle dynamic prediction systems with on line identification of vehicle parameters and road conditions. Sensors, 12(11):15778–15800, 2012.
[37] Wang Jingyu and Duan Jianmin. Lane detection algorithm using vanishing point. In Machine Learning and Cybernetics (ICMLC), 2013, 2013.
[38] J.Matas, C.Galambos, and J.Kittler. Robust detection of lines using the progressive probabilistic hough transform. In Computer Vision and Image Understanding, pages 119–137, 2000.
[39] Beomjun Kim and Kyongsu Yi. Probabilistic states prediction algorithm using multi sensor fusion and application to smart cruise control systems. In Intelligent Vehicles Symposium (IV), 2013 IEEE, 2013.
[40] Jisu Kim, Yongseo Park Jeonghyun Baek, and Euntai Kim1. New vehicle detection method with aspect ratio estimation for hypothesized windows. In Sensors (Basel, Switzerland), 104.
[41] SamYong Kim, JeongKwan Kang Se-Young Oh, YoungWoo Ryu Kwangsoo Kim, Sang-Cheol Park, and KyongHa Park. Front and rear vehicle detection and tracking in the day and night times using vision and sonar sensor fusion. In IEEE/RSJ In ternational Conference on Intelligent Robots and Systems (IROS 2005), pages 2173–2178, 2005.
[42] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid object detection. In IEEE ICIP 2002, pages 900–903, 2002.
[43] Panagiotis Lytrivis, George Thomaidis, Manolis Tsogas, and Angelos Amditis. An advanced cooperative path prediction algorithm for safety applications in vehicular networks. IEEE Trans. Intelligent Transportation Systems, 12(3):669–679, 2011.
[44] Mahdi Rezaei, Mutsuhiro Terauchi, and Reinhard Klette. Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Trans. Intelligent Transportation Systems, 16(5):2723–2743, 2015.
[45] Ronan O‘Malley, Edward Jones, and Martin Glavin. Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions. In IEEE Transactions on Intelligent Transportation Systems, pages 453–462, 2010.
[46] Young-Woo Seo. Detection and tracking the vanishing point on the horizon. 2014.
[47] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.
[48] Rahul Sukthankar. Raccoon : A real-time autonomous car chaser operating optimally at night. In IEEE Intelligent Vehicles 93 Symposium, pages 37–42, 1993.
[49] T.K. ten Kate, M. B. van Leewen, S. E. Moro-Ellenberger, and F. C. A. Groen. Mid range and distant vehicle detection with a mobile camera. In IEEE IntelligentVehicles Symp., pages 72–77, 2004.
[50] Michael Brauckmann Thomas Zielke and Werner von Seelen. Intensity and edge based symmetry detection with an application to carfollowing. Computer Vision and Image Understanding, 58(2):177–190, September 1993.
[51] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical report, International Journal of Computer Vision, 1991.
[52] tomazas. opencv-lane-vehicle-track.
[53] Yu-Ming Tsai and Hsu-Yung Cheng. An event detection and driver assistance system based on dense optical flow analysis. 2016.
[54] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, pages 511–518, 2001.
[55] Eric A. Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation. pages 153–158, 2000.
[56] Hsi-Chao Lin Wei-Kai Kuo, Chang-Jo Wu. Amend the prior vehicle distance detection system which converted by inverse perspective mapping. In AIT 2010 International Conference on Advanced Information Technologies, 2010.
[57] Xiaowen Wu, Donghua Ding Yuxin Peng, Huaping Liu, Kezhong He, and Fuchun Sun. Color visionbased multilevel analysis and fusion for road area detection. In Intelligent Vehicles Symposium, pages 602–607, 2008.
[58] Tao Xiong and Christian Debrunner. Stochatic car tracking with lineand color-based features. IEEE Transactions on Intelligent Transportation Systems, 5(4):324–328, December 2004.
[59] Zhang-Kun Yao, Zhen-Wei Zun, and Yi-Feng Su. Front safety warning system chip implementation. In Chinese Society of Mechanical Engineers 104, 104.
[60] YoungJoon Yoo, Kimin Yun, Sangdoo Yun, JongHee Hong, Hawook Jeong, and Jin Young Choi. Visual path prediction in complex scenes with crowded moving objects. In The IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 2016.
[61] Muhammad Aizzat Zakaria, Hairi Zamzuri, Rosbi Mamat, and Saiful Amri Mazlan. A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot. International Journal of Advanced Robotic Systems, 10(8):309, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top