|
1. R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, T. Hai, G. Yanlin, K. Hanna, A. Pope, R. Wildes, D. Hirvonen,M. Hansen, and P. Burt, “Aerial video surveillance and exploitation,” Proc. IEEE, vol. 89, no. 10, pp. 1518–1539, 2001. 2. I. Emst, S. Sujew, K. U. Thiessenhusen,M. Hetscher, S. Rabmann, and M. Ruhe, “LUMOS—Airbome traffic monitoring system,” in Proc. IEEE Intell. Transp. Syst., Oct. 2003, vol. 1, pp. 753–759. 3. L. D. Chou, J. Y. Yang, Y. C. Hsieh, D. C. Chang, and C. F. Tung, “Intersection- based routing protocol for VANETs,” Wirel. ers. Commun., vol. 60, no. 1, pp. 105–124, Sep. 2011. 4. S. Srinivasan, H. Latchman, J. Shea, T. Wong, and J. McNair, “Airborne traffic surveillance systems: Video surveillance of highway traffic,” in Proc. ACM 2nd Int. Workshop Video Surveillance Sens. Netw., 2004, pp. 131–135. 5. SONG X.,NEVATIA R., “Detection and tracking of movingvehicles in crowded scenes,” IEEE Workshop Motion and Video Computing, 2007. 6. Jong-Ho, C., L. Kang-Ho, et al., “Vehicle Tracking using Template Matching based on Feature Points,” IEEE International Conference on Information Reuse and Integration, 2006. 7. B. Johansson, J. Wiklund, P.-E. Forssen, and G. Granlund, “Combining shadow detection and simulation for estimation of vehicle size and position,” Pattern Recognition Letters, vol. 30, no. 8, 2009, pp. 751-759. 8. M. Vargas, J. M. Milla, S. L. Toral, and F. Barrero, “An enhanced background estimation algorithm for vehicle detection in urban traffic scenes,” IEEE Transactions on Vehicular Technology, vol. 59, no. 8, pp. 3694–3709, 2010. 9. N. A. Mandellos, et al., “A background subtraction algorithm for detecting and tracking vehicles,” Expert Systems with Applications, vol. 38, pp. 1619-1631, 2011. 10. J. Wood, “Statistical Background Models with Shadow Detection for Video Based Tracking,” LiTH-ISY-EX-07/3921-SE, Linkoping University, Sweden, March, 2007. 11. A. C. Shastry and R. A. Schowengerdt, “Airborne video registration and traffic-flow parameter estimation,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 4, pp. 391–405, Dec. 2005. 12. H. Cheng and J.Wus, “Adaptive region of interest estimation for aerial surveillance video,” in Proc. IEEE Int. Conf. Image Process., 2005, vol. 3, pp. 860–863. 13. X. Fan, H. Rhody, and E. Saber, “A spatial-feature-enhanced MMI algorithm for multimodal airborne image registration,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2580–2589, Jun. 2010. 14. Z. Liu, J. An, and Y. Jing, “A simple and robust feature point matching algorithm based on restricted spatial order constraints for aerial image registration,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 514– 527, Feb. 2012. 15. J. Ma, J. C.-W. Chan, and F. Canters, “Fully automatic subpixel image registration of multiangle CHRIS/Proba data,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2829–2839, Jul. 2010. 16. I. H. Mtir, K. Kaaniche, M. Chtourou, and P. Vasseur, “Aerial sequence registration for vehicle detection,” in Proceedings of the 9th International Multi-Conference on Systems, Signals and Devices (SSD '12), pp. 1–6, 2012. 17. S. Hinz and A. Baumgartner, “Vehicle detection in aerial images using generic features, grouping, and context,” in Proc. DAGM-Symp., Sep. 2001, vol. 2191, Lecture Notes in Computer Science, pp. 45–52. 18. H. Cheng and D. Butler, “Segmentation of aerial surveillance video using a mixture of experts,” in Proc. IEEE Digit. Imaging Comput. —Tech. Appl., 2005, p. 66. 19. R. Lin, X. Cao, Y. Xu, C.Wu, and H. Qiao, “Airborne moving vehicle detection for urban traffic surveillance,” in Proc. 11th Int. IEEE Conf. Intell. Transp. Syst., Oct. 2008, pp. 163–167. 20. L. Hong, Y. Ruan, W. Li, D. Wicker, and J. Layne, “Energy-based video tracking using joint target density processing with an application to unmanned aerial vehicle surveillance,” IET Comput. Vis., vol. 2, no. 1, pp. 1–12, 2008. 21. R. Lin, X. Cao, Y. Xu, C.Wu, and H. Qiao, “Airborne moving vehicle detection for video surveillance of urban traffic,” in Proc. IEEE Intell. Veh. Symp., 2009, pp. 203–208. 22. J. Y. Choi and Y. K. Yang, “Vehicle detection from aerial images using local shape information,” Adv. Image Video Technol., vol. 5414, Lecture Notes in Computer Science, pp. 227–236, Jan. 2009. 23. J. Kang, I. Cohen, G. Medioni, C. Yuan, “Detection and Tracking of Moving Objects from a Moving Platform in Presence of Strong Parallax,” International Conference on Computer Vision, 2005. 24. S.M. Al-Garni and A. A. Abdennour, “Moving Vehicle Detection using Automatic Backgroung Extractuib,” World Academy of Science, Engineering and Technology 24,2006. 25. T. Ahonen, A. Hadid, and M. Pietikäinen, “Tracking the Rotating Targets in Aerial Videos,” IEEE Proceedings of the 10th World Congress on Intelligent Control and Automation, 2012 26. Z. Han, J. Jiao, B. Zhang, Q. Ye, and J. Liu, “Visual Object Tracking via Sample-Based Adaptive Sparse Representation (AdaSR),” Pattern Recognition, vol. 44, no. 9, pp. 2170-2183, 2011. 27. T. Pollard and M. Antone, “Detecting and tracking all moving objects in wide-area aerial video,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW '12), pp. 15–22, 2012. 28. Zhou, H., Kong, H., Wei, L., Creighton, D., Nahavandi, S., "Efficient road detection and tracking for unmanned aerial vehicle." IEEE Transactions on Intelligent Transportation Systems, vol. 16, issue 1, pp. 297-309, 2015. 29. C. Aeschliman, J. Park, A.C. Kak, “Tracking Vehicles Through Shadows and Occlusions in Wide-Area Aerial Video,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, Issue 1. 30. Telea, A., “An image inpainting technique based on the fast marching method,”, Journal of Graphics Tools, vol. 9, No. 1, ACM Press 2004. 31. B. Uzkent, M.J. Hoffman, and A. Vodacek, “Real-time Vehicle Tracking in Aerial Video using Hyperspectral Features,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop, June 2016. 32. X. Jiang, X. Cao, “Surveillance from above: a detection-and-prediction based multiple target tracking method on aerial videos,” IEEE Conference on Integrated Communications Navigation and Surveillance (ICNS). Herndon, VA, USA, April 2016. 33. M. Pouzet, P. Bonnin, J. Laneurit, et al. “Moving Targets Detection from UAV Based on a Robust Real-Time Image Registration Algorithm,” IEEE Conference on Image Processing (ICIP), 2014 34. Z. Kalal, K. Mikolajczyk, and J. Matas. “Tracking-learning-detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, 2012, pp.1409-1422. 35. Hsu-Yung Cheng, Chih-Chia Weng, and Yi-Ying Chen, “Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 2152–2159, Apr. 2012. 36. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding, vol.110, no.3, pages 346–359, 2008. 37. Davis, J.W., Bobick, A.F., “The representation and recognition of human movement using temporal templates,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.928-934, 1997. 38. Viola, P., Jones, M. “Rapid object detection using a boosted cascade of simple features,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp.511-518. 39. W. He, T. Yakayoshi, H. Lu, S. Lao, “SURF tracking,” Proceedings of the IEEE Conference on Computer Vision, 2009, pp. 1586–1592. 40. Dalad, N. and B. Triggs, ''Histograms of oriented gradients for human detection,'' Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp.886-893. 41. M. Muja, D. G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", International Conference on Computer Vision Theory and Applications (VISAPP'09), 2009. 42. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2003.
|