|
[1] M. Enzweiler and D. M. Gavrila, ''Monocular pedestrian detection: survey and experiments,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008. [2] M. Bertozzi, A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi, ''Shape-based pedestrian detection and localization,'' in Proc. IEEE Int. Conf. Intelligent Transportation Systems, Shanghai, China, Oct.12-15, 2003, pp.328-333. [3] J. Ge, Y. Luo, and G. Tei, "Real-time pedestrian detection and tracking at nighttime for driver-assistance systems," IEEE Trans. Intelligent Transportation Systems, vol.10, pp.283-298, 2009. [4] C. Papageorgiou and T. Poggio, "A trainable system for object detection," Int. Journal of Computer Vision, vol.38, no.1, pp.15-33, 2000. [5] N. Dalad and B. Triggs, ''Histograms of oriented gradients for human detection,'' in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893. [6] Y. Zhao, Y. Zhang, R. Cheng, D. Wei, and G. Li, "An enhanced histogram of oriented gradients for pedestrian detection," IEEE Intelligent Transportation Systems Magazine, vol.7, is.3, pp.29-38, Jul. 2015. [7] I. P. Alonso, D. F. Llorca, and M. Á. Sotelo, ''Combination of feature extraction methods for SVM pedestrian detection,'' IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007. [8] L. Andreone, F. Bellotti, A. D. Gloria, and R. Lauletta, ''SVM-based pedestrian recognition on near-infrared images,'' in Proc. 4th IEEE Int. Symp. on Image and Signal Processing and Analysis, Torino, Italy, Sep.15-17, 2005, pp.274-278. [9] M. Bertozzi, A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, ''A pedestrian detector using histograms of oriented gradients and a support vector machine classifier,'' in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, WA, Sep.30-Oct.3, 2007, pp.143-148. [10] X.-B. Cao, H. Qiao, and J. Keane, ''A low-cost pedestrian-detection system with a single optical camera,'' IEEE Trans. Intelligent Transportation Systems, vol.9, no.1, pp.58-67, 2008. [11] T.-K. An and M.-H. Kim, ''A new diverse adaboost classifier,'' in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363. [12] P. Luo, X. Wang, X. Tang, "Pedestrian parsing via deep decompositional neural network," in Proc. IEEE Int. Conf. Computer Vision (ICCV), Shanghai, China, Dec.1-8, 2013, pp.2648-2655. [13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, Jun.23-28, 2014, pp.580-587. [14] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeul-ders, “Selective search for object recognition,” Int. Journal of Computer Vision, vol.104, is.2, pp.154-171, 2013. [15] R. Girshick, "Fast R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Santiago, Chile, Dec.11-18, 2015, pp.1440-1448. [16] K. He, X. Zhang, S. Ren, and J. Sun, '' Spatial pyramid pooling in deep convolutional networks for visual recognition ,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.37, is.9, pp.1904-1916, 2015. [17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks," in Proc. of Conf. on Neural Information Processing Systems (NIPS), Advances in neural information processing systems, Montreal, Canada, Dec.7-10, 2015, pp.1-14. [18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints," Int. Journal of Computer Vision, vol.60, is.2, pp.91-110, Nov. 2004. [19] E. Tola, V. Lepetit, and P. Fua, ''A fast local descriptor for dense matching,'' in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, Jun.23-28, 2008, pp.1-8. [20] J. Bromley, J. W. Bentz, L. bottou, I. Guyon, Y. LeCun, C. Moore, E. Sackinger, and R. Shah, ''Signature verification using a siamese time delay neural network,'' Int. Journal of Pattern Recognition and Artificial Intelligence, vol.7, no.4, pp.669-687, Aug. 1993. [21] S. Chopra, R. Hadsell, and Y. LeCun, ''Learning a similarity metric discriminatively with application to face verification,'' in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, Jun.20-25, 2005, pp.539-546. [22] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convolutional neural networks,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.8-10, 2015, pp.4353-4361. [23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent (ICLR), San Diego, CA, May 7-9, 2015, pp.1-14. [24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “ SSD: Single shot multibox detector,” in European Conf. on Computer Vision (ECCV), Amsterdam, Holland, Oct.8-16, 2016, pp.21-37. [25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, ” Overfeat: integrated recognition, localization and detection using convolutional networks,” in Proc. Int. Conf. Learn. Represent (ICLR), Banff, Canada, Apr.14-16, 2014, pp.1-15. [26] J. Long, E. Shelhamer, and T. Darrell, ”Fully convolutional networks for semantic segmentation,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.8-10, 2015, pp.3431-3440. [27] B. Hariharan, P. Arbel´ aez, R. Girshick, and J. Malik, ”Hypercolumns for object seg- mentation and fine-grained localization,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.8-10, 2015, pp.447-456. [28] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, ”Scalable object detection using deep neural networks,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, Jun.24-27, 2014, pp.2155-2162. [29] R. Hartley, and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, Glasgow, UK, 2004. [30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: convolutional architecture for fast feature embedding," in Proc. of the 22nd ACM Int. Conf. on Multimedia, Orlando, FL, Nov.3-7, 2014, pp.675-678.
|