|
[1] D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999. [2] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing 13 (Proc. NIPS 2000), MIT Press, 2001. [3] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. on Information Theory, vol. 47, no. 7, pp. 2845–2862, 2001. [4] Y. Lin and D. Lee, “Bayesian L1-Norm sparse learning,” in ICASSP, 2006, vol. 5, pp. 605–608. [5] D. Wipf and B. Rao, “Sparse bayesian learning for basis selection,” IEEE Trans. on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004. [6] A.M.Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 228–233, Feb. 2001. [7] M. I. Mandel and D. P. W. Ellis, “Multiple-Instance Learning for Music Information Retrieval,” The International Society for Music Information Retrieval, 2008. [8] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines for multiple-instance learning”. Advances in Neural Information Processing Systems, vol. 15, pp. 561–568. MIT Press, Cambridge, MA, 2003. [9] Y. Chen, J. Bi, and J. Z. Wang, “MILES: Multiple-instance learning via embedded instance selection”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1931–1947, 2006. [10] Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. [11] V. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., 1995.16 [12] R. Henao, X. Yuan, and L. Carin. Bayesian nonlinear SVMs and factor modeling. NIPS, 2014. [13] N. G. Polson and S. L. Scott. Data augmentation for support vector machines. Bayes. Anal., 2011. [14] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005. [15] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, pp. 504-507, 2006. [16] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, pp. 72-2011. [17] David M Blei, Michael I Jordan, and John W Paisley.Variational bayesian inference with stochastic search. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 1367–1374, 2012. [18] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014. [19] Mnih, Andriy, and Karol Gregor. "Neural variational inference and learning in belief networks." arXiv preprint arXiv:1402.0030 (2014). [20] Kaae Sønderby, C., et al. "How to train deep variational autoencoders and probabilistic ladder networks. arXiv preprint." arXiv preprint arXiv:1602.02282(2016). [21] Salimans, Tim. "A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features." arXiv preprint arXiv:1602.08734 (2016). [22] Kingma, Diederik P., and Max Welling. "Stochastic gradient VB and the variational auto-encoder." Second International Conference on Learning Representations, ICLR. 2014. [23] Pu, Yunchen, et al. "Variational autoencoder for deep learning of images, labels and captions." Advances in Neural Information Processing Systems. 2016. [24] Pu, Yunchen, et al. "Variational Autoencoder for Deep Learning of Images, Labels and Captions: Supplementary Material." [25] Hoffman, Matthew D., et al. "Stochastic variational inference." The Journal of Machine Learning Research 14.1 (2013): 1303-1347. [26] CireşAn, Dan, et al. "Multi-column deep neural network for traffic sign classification." Neural Networks 32 (2012): 333-338. [27] Wainwright, Martin J., and Michael I. Jordan. "Graphical models, exponential families, and variational inference." Foundations and Trends® in Machine Learning 1.1–2 (2008): 1-305. [28] Su, Li, Li-Fan Yu, and Yi-Hsuan Yang. "Sparse Cepstral, Phase Codes for Guitar Playing Technique Classification." ISMIR. 2014. [29] Quiñonero-Candela, Joaquin, and Carl Edward Rasmussen. "A unifying view of sparse approximate Gaussian process regression." Journal of Machine Learning Research 6.Dec (2005): 1939-1959. [30] Rowley, Henry A., Shumeet Baluja, and Takeo Kanade. "Neural network-based face detection." IEEE Transactions on pattern analysis and machine intelligence20.1 (1998): 23-38. [31] Herman, Gabor T. "Image reconstruction from projections." Image Reconstruction from Projections: Implementation and Applications (1979). [32] Berry, Michael W., et al. "Algorithms and applications for approximate nonnegative matrix factorization." Computational statistics & data analysis 52.1 (2007): 155-173. [33] Wright, John, et al. "Robust face recognition via sparse representation." IEEE transactions on pattern analysis and machine intelligence 31.2 (2009): 210-227. [34] Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis." Chemometrics and intelligent laboratory systems 2.1-3 (1987): 37-52. [35] Yang, Ming-Hsuan, and Narendra Ahuja. "Gaussian mixture model for human skin color and its applications in image and video databases." Storage and Retrieval for Image and Video Databases (SPIE). 1999. [36] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006. [37] Joyce, James M. "Kullback-leibler divergence." International Encyclopedia of Statistical Science. Springer Berlin Heidelberg, 2011. 720-722. [38] Sotiris, Vasilis A., W. Tse Peter, and Michael G. Pecht. "Anomaly detection through a bayesian support vector machine." IEEE Transactions on Reliability59.2 (2010): 277-286. [39] Zheng, Zijian, and Geoffrey I. Webb. "Lazy learning of Bayesian rules." Machine Learning 41.1 (2000): 53-84. [40] Moon, Todd K. "The expectation-maximization algorithm." IEEE Signal processing magazine 13.6 (1996): 47-60. [41] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic Annotation and Retrieval of Music and Sound Effects,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, pp. 467–476, Feb., 2008. [42] A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014. [43] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015. [44] Scholkopf, Bernhard, et al. "Comparing support vector machines with Gaussian kernels to radial basis function classifiers." IEEE transactions on Signal Processing 45.11 (1997): 2758-2765. [45] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and variational inference in deep latent gaussian models. arXiv preprint arXiv:1401.4082, 2014. [46] Wu, Gin-Der, and Chin-Teng Lin. "Word boundary detection with mel-scale frequency bank in noisy environment." IEEE transactions on speech and audio processing 8.5 (2000): 541-554. [47] Hsu, Chih-Wei, and Chih-Jen Lin. "A comparison of methods for multiclass support vector machines." IEEE transactions on Neural Networks 13.2 (2002): 415-425. [48] Deng, Li, et al. "Binary coding of speech spectrograms using a deep auto-encoder." Eleventh Annual Conference of the International Speech Communication Association. 2010.
|