跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪郁涵
研究生(外文):Yu-Han Hung
論文名稱:提高二硫化鉬活性位置之複合電極於高效製氫 之研究
論文名稱(外文):Increase the Active Site of MoS2 Hybrid Electrode for Efficient Electrocatalytic Hydrogen Production
指導教授:蘇清源
指導教授(外文):Ching-Yuan Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:二硫化鉬製氫
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
近期新興活性觸媒之研究中,二硫化鉬在析氫效能及成本效益上,可望能取代貴金屬(如白金、銣)和過度金屬等。由於二硫化鉬的二維結構伴隨著暴露大量S原子的高活性邊界態,為產氫的關鍵。本研究以兩種不同的方式,增加暴露邊界態的活性位置:1. 以四硫鉬酸銨作前驅物與微流道成型(micromolding in capillaries, MIMIC)的方式,壓印出高密度的二硫化鉬奈米帶陣列,其二硫化鉬奈米帶的厚度為3.9 nm、線寬為157~465 nm、長為2 cm,具有極高的長寬比(~7.4×108)。另外,二硫化鉬奈米帶能被印製在各式各樣的基板上,比如SiO2/Si、藍寶石基板、鍍金薄膜、FTO導電玻璃或石墨烯薄膜上。在析氫反應中,密度越高的MoS2/MoSx奈米結構表現的效果越優(過電位約211 mV @10 mA/cm2,塔弗斜率為43 mV/dec)。2. 以冷凍乾燥技術創造出三維結構氧化型石墨烯,加上高溫退火(1000 oC)移除氧基團提升導電性,形成多孔、超輕量級、高比表面積及高導電性的載體,適合與二硫化鉬觸媒作複合電極。本研究選擇在四種不同的溫度退火,發現二硫化鉬的結晶性會影響到析氫效果的表現上(過電位約163 mV @10 mA/cm2塔弗斜率為41 mV/dec)。在這兩項工作中,對於水分解電催化性能的實驗裡,我們找到了二硫化鉬奈米帶的最佳線寬以及二硫化鉬三維複合材料的最佳合成條件(100 oC)。本研究探討二硫化鉬於結構與結晶性的產氫特性研究,於未來可望成為一種高活性與低成本的產氫候選材料。
Molybdenum disulfide (MoS2) has recently emerged as a promising catalyst for the hydrogen evolution reaction (HER) in water splitting that may replace the noble metals such as platinum and rubidium, a cost-effective and highly catalytic material. Two-dimensional MoS2 structures with exposed S-edge have been reported as active electrocatalytic catalyst for hydrogen production. We utilize these two different ways to generate exposed active sites: 1. Prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 108 were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene coated glass. In the hydrogen evolution reaction (HER), the high-density MoS2/MoSx nanostructures has the best performance (overpotential of ∼211 mV @10 mA/cm2 and a Tafel slope of 43 mV/dec). 2. Freeze drying to produce three-dimensional structures of graphene oxide (rGO), and we then anneal them at 1000 oC to remove the oxide group, thereby enhancing the conductivity. The reduce graphene oxide has a high surface area, high porosity and low weight, so it could be used as a conductive substrate with attached MoS2 nanoparticles. At four different temperature, we discovered that the crystallinity of MoS2 will affect its performance in the HER (overpotential of 163 mV @10 mA/cm2 and a Tafel slope of 41 mV/dec). In those works, we found the best width of MoS2 nanoribbons and temperature to create large amounts of active sites in MoS2/FTO and MoSx/rGO, which facilitate the electrocatalytic performance for water splitting. In the future, it will be a potential material for fuel cell applications.
摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧與研究背景 4
2-1 產氫技術 4
2-1-1蒸氣重組反應 (Steam reforming,SR) 4
2-1-2烴熱解 (Hydrocarbon pyrolysis) 5
2-1-3 生質能 (Biomass) 6
2-1-4 水分解 (Water splitting) 7
2-2 材料基本特性 8
2-2-1 觸媒──二硫化鉬(Molybdenum disulfide, MoS2) 8
2-2-2 溫度對硫化鉬結晶性之影響 13
2-2-3 二硫化鉬光學特性結構 14
2-2-4 石墨烯材料介紹 15
2-3 毛細管微成型 (Micromolding in capillaries, MIMIC) 17
2-4 研究動機 18
第三章 實驗方法與步驟 20
3-1 實驗藥品與儀器 20
3-1-1 藥品 20
3-1-2 儀器 20
3-2 基板處理 21
3-2-1氟氧化錫(Fluorine doped Tin Oxide, FTO)玻璃清潔程序 21
3-2-2石墨烯轉印程序 21
3-3 MIMIC膜具製備方式 22
3-4 印製MoS2奈米帶於基板上 22
3-5 化學剝離石墨烯製備方式 24
3-6三維結構之氧化石墨烯 25
3-7熱還原氧化石墨烯 25
3-8 MoSx/rGO製備與電極製備 26
3-5 材料特性檢測 27
3-5-1 表面形貌分析 27
3-5-2 結晶結構分析 29
3-5-4 表面元素成分分析 30
3-6 電化學測試實驗流程 30
3-6-1 參考電極 30
3-6-2 iR校正 31
3-6-3線性掃描伏安法(Linear sweep voltammetry, LSV) 31
3-6-4 交流阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 32
第四章 結果與討論 34
4-1二硫化鉬奈米帶合成及其觸媒活性之研究 34
4-1-1不同線寬之翻模結構特徵之表面形貌的影響 34
4-1-2各種轉印之二硫化鉬結構特徵之表面形貌的影響 35
4-1-3轉印結構對於二硫化鉬奈米顆粒的粒徑分布影響 38
4-1-4 二硫化鉬奈米帶對於結晶性之分析 38
4-1-5二硫化鉬奈米帶電化學特性分析 40
4-2二硫化鉬複合石墨烯三維多孔電極 44
4-2-1退火溫度對二硫化鉬複合石墨烯三維多孔電極之表面形貌的影響 44
4-2-2改變不同熱處理溫度對於二硫化鉬結晶性之分析 46
4-2-4 氧化型石墨烯的還原溫度對結晶性之影響 48
4-2-5 二硫化鉬複合石墨烯海綿電化學特性分析 49
第五章 結論 55
第六章 未來工作 56
參考文獻 57
[1] Chefurka, P., World Energy to 2050, in Published. October 07, 2007.
[2] (IEA), I.E.A., World Energy Investment. September 2016.
[3] 歷年發電量占比. 台灣電力公司, 2017.
[4] TechNews, 再生能源持續成長. 科技新報, 2017.
[5] Balthasar, W., Hydrogen production and technology: today, tomorrow and beyond. International Journal of Hydrogen Energy, 1984. 9(8): p. 649-668.
[6] Steinberg, M., THE TRAP OF LEGALITY: THE ASSOCIATION OF THE JEWS OF BELGIUM, in The Victims of the Holocaust, Volume 2. 1989.
[7] Nikolaidis, P. and A. Poullikkas, A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017. 67: p. 597-611.
[8] Muradov, N.Z., How to produce hydrogen from fossil fuels without CO2 emission. International Journal of Hydrogen Energy, 1993. 18(3): p. 211-215.
[9] Muradov, N., Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. International Journal of Hydrogen Energy, 2001. 26(11): p. 1165-1175.
[10] Demirbaş, A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001. 42(11): p. 1357-1378.
[11] Nowotny, J., et al., Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 2005. 30(5): p. 521-544.
[12] Ni, M., et al., An overview of hydrogen production from biomass. Fuel Processing Technology, 2006. 87(5): p. 461-472.
[13] Steinfeld, A., Solar thermochemical production of hydrogen––a review. Solar Energy, 2005. 78(5): p. 603-615.
[14] Zhang, Y., et al., Electrolysis of the Bunsen Reaction and Properties of the Membrane in the Sulfur–Iodine Thermochemical Cycle. Industrial & Engineering Chemistry Research, 2014. 53(35): p. 13581-13588.
[15] Bamberger, C.E. and D.M. Richardson, Hydrogen production from water by thermochemical cycles. Cryogenics, 1976. 16(4): p. 197-208.
[16] Rossmeisl, J., A. Logadottir, and J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005. 319(1): p. 178-184.
[17] Levene, J.I., et al., An analysis of hydrogen production from renewable electricity sources. Solar Energy, 2007. 81(6): p. 773-780.
[18] Ye, M., et al., Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics, 2015. 2(1): p. 288.
[19] Nørskov, J.K., et al., Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23-J26.
[20] Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972. 39(1): p. 163-184.
[21] Jaramillo, T.F., et al., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 2007. 317(5834): p. 100-102.
[22] Chang, Y.-H., et al., Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. Advanced Materials, 2013. 25(5): p. 756-760.
[23] Li, Y., et al., MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2011. 133(19): p. 7296-7299.
[24] Zheng, X., et al., Space-Confined Growth of MoS2 Nanosheets within Graphite: The Layered Hybrid of MoS2 and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014. 26(7): p. 2344-2353.
[25] Liu, K.-K., et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 2012. 12(3): p. 1538-1544.
[26] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
[27] Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2009. 9(1): p. 30-35.
[28] Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
[29] Kuila, T., et al., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 2013. 5(1): p. 52-71.
[30] Schniepp, H.C., et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539.
[31] Dreyer, D.R., et al., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1): p. 228-240.
[32] Kim, E., Y. Xia, and G.M. Whitesides, Polymer microstructures formed by moulding in capillaries. Nature, 1995. 376(6541): p. 581-584.
[33] Kim, E., Y. Xia, and G.M. Whitesides, Micromolding in Capillaries:  Applications in Materials Science. Journal of the American Chemical Society, 1996. 118(24): p. 5722-5731.
[34] Marcano, D.C., et al., Improved Synthesis of Graphene Oxide. ACS Nano, 2010. 4(8): p. 4806-4814.
[35] Chang, Y.-H., et al., Three-Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small, 2014. 10(5): p. 895-900.
[36] Kong, D., et al., Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters, 2013. 13(3): p. 1341-1347.
[37] Merki, D., et al., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2011. 2(7): p. 1262-1267.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top