跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴梓堯
研究生(外文):Zih-Yao Dai
論文名稱:量子點分子製作之冷卻器
指導教授:郭明庭
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:冷卻器量子點分子
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文理論討論量子點分子製作的冷卻器。隨著奈米元件的普及,奈米積體電路的散熱問題就顯得愈發重要,奈米積體電路的散熱問題愈來愈受重視並開發奈米冷卻器來解決,因此。我們利用Anderson模型來描述冷卻器。其主要結構為金屬電極及半導體的量子點分子。冷卻器的電流與電子熱流我們運用格林函數來推導出解析的形式。本理論也引進適當的聲子熱流模型,來討論聲子熱流在冷卻器的降溫特性中所扮演的角色。
We have theoretically investigated the properties of solid state cooler made of semiconductor quantum dot molecules. It is important to solve heat problems of circuits with nanoscale electronic components. Therefore, the design of nanoscale-coolers is desirable. We use the Anderson model to describe the Hamiltonian of solid state cooler made of quantum dot molecules. The electron and heat current of cooler are derived by the Green’s function technique. We also used an empirical model to include the phonon heat current. The temperature difference of cooler arising from phonon thermal conductance is discussed and analyzed.
摘要 0
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章、導論 1
1-1前言 1
1-2 熱電效應及發展 2
1-3 固態冷卻器 4
1-4 研究動機 5
第二章:串接耦合量子點分子模型 6
2-1 前言 6
2-2 系統模型建立 6
2-3 系統電子總能 8
2-4 穿隧電流、熱流與費米-狄拉克分布函數 10
2-5 電子傳輸係數 11
2-6 固態冷卻器的能源轉換效率 12
第三章、串接耦合量子點分子冷卻器 14
3-1 前言 14
3-2 調變不同環境平衡溫度之效應 14
3-3 調變不同外部電壓之效應 18
3-4 調變不同穿隧率與電子躍遷效應 20
3-5 調變量子點間庫倫交互作用下之效應 22
第四章、聲子熱流對冷卻器溫差的效應分析 25
4-1 前言 25
4-2 聲子熱流效應 26
4-3 奈米線物理參數對冷卻器溫差的效應 27
4-4 調變平衡溫度對溫差的影響 30
第五章、結論 33
參考文獻 34
參考文獻

[1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science 321, 1457 (2008).
[2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, Semiconductor “Thermoelements, and Thermoelectric Cooling”, Infosearch Limited, London (1957).
[4] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures”, Science 303, 777 (2004).
[5] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys”, Nano Lett. 8, 4670 (2008).
[6] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimension Conductor”, Phys. Rev. B 47, 16631(R) (1993).
[7] Y. Yu. Peter,“Effect of Quantum Confinement on Electrons and Phonons in Semiconductors”, Fundamental of Semiconductors, 469, Springer, Berlin, Heidelberg (2010).
[8] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced Materials 19, 1043 (2007).
[9] Y. M. Lin and M. S. Dresselhaus, “Thermolectric properties of superlattice nanowires” , Phys. Rev. B 68, 075304 (2002).
[10] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229 (2002).
[11] G D Mahan and J O Sofo , “The best thermoelectric”, PNAS,93,7436(1996).
[12] Yen-Chun Tseng, David M.-T. Kuo, Yia-Chung Chang, and Yan-Ting Lin, "Heat rectification effect of serially coupled quantum dots",Appl. Phys. Lett 103, 053108 (2013).
[13] David M.-T. Kuo and Yia-chung Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions", Phys. Rev. B 81, 205321 (2010).
[14] D. L. Nika and E. P. Pokatilov, ‘‘Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering’’, Phys. Rev. B 84, 165415 (2011).
[15] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent Transport in Interacting and Noninteracting Resonant-tunneling Systems”, Phys. Rev. B 50, 5528 (1994).
[16] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes” arXiv:1209.0506(2012).
[17] David M.-T. Kuo, and Yia-Chung Chang, “Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System”, Jpn. J. Appl. Phys. 50, 105003 (2011).
[18] David M T Kuo , Chih-Chieh Chen, and Yia-Chung Chang, ‘‘Large enhancement in thermoelectric efficiency of quantum dot junction due to increase of level degeneracy’’,Phys.Rev.B.95,075432(2017).
[19] Renkun Chen, Allon I. Hochbaum, Padraig Murphy, Joel Moore, Peidong Yang, and Arun Majumdar, ‘‘Thermal Conductance of Thin Silicon Nanowires’’, Phys. Rev. Lett. 101, 105501(2008).
[20] A.I.Hochbaum, R. Chen, R. D. Delgadol, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, ‘‘Enhanced thermoelectric performance of rough silicon nanowire’’, Nature 451, 163(2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top