跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許哲綮
研究生(外文):Che-Ching Hsu
論文名稱:具p型氮化鎵表層之 金絕半高電子遷移率電晶體
論文名稱(外文):The investigation of AlGaN/GaN MIS-HEMTs with a p-GaN cap layer
指導教授:辛裕明
指導教授(外文):Yue-Ming Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:96
中文關鍵詞:p型氮化鎵表層金絕半高電子遷移率電晶體
外文關鍵詞:p-GaN capMIS-HEMTs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討p型氮化鎵作為氮化鋁鎵/氮化鎵高電子遷移率電晶體之表層 (cap),並搭配沉積氧化鋁 (Al2O3) 作為閘極介電層來製作成金絕半高電子遷移率電晶體 (MIS-HEMTs) 之研究;論文中也針對不同氮化鎵表層厚度研究元件特性的差異。
利用霍爾量測 (Hall measurement) 及光激發致螢光頻譜 (Photo-Luminescence, PL) 量測進行分析所使用的兩個不同氮化鎵表層厚度之磊晶片,而氮化鎵表層厚度的差異對於元件造成的影響則利用直流和脈衝 (pulse) 電壓/電流量測進行探討。
氮化鎵表層較厚的元件相對呈現較佳的抑制閘極漏電流能力,因而有較好的電晶體之電流開關比,可高達109。針對與表面狀態有緊密相關的閘極漏電流,會分析電流形成的機制,並觀察不同厚度p型氮化鎵表層對於閘極漏電流的影響。元件的崩潰電壓特性,不同厚度氮化鎵表層元件皆可達700伏特。而在脈衝電壓/電流特性上,當為施加或給相對於小的靜止點偏壓條件 (quiescent point) 時,氮化鎵表層較厚之元件較能減緩電流崩塌 (current collapse) 的現象。
而對於不同厚度的p型氮化鎵表層對氧化鋁的介電層/半導體介面,將量測直流/脈衝的臨界電壓飄移現象,並透過對金絕半結構之電容進行電容-電壓量測萃取介面缺陷密度 (Dit) 且量測電容的暫態電流以分析缺陷捕捉機制。量測結果指出較厚氮化鎵表層元件具有較佳的表面狀態外,製作成元件後也具有較好的介電層/半導體介面品質。
以p型氮化鎵作為表層並搭配氧化鋁閘極介電層的金絕半高電子遷移率電晶體,量測結果顯示了相當不錯的元件特性,對於在電源切換應用上之空乏型 (D-mode) 元件中具有相當高的潛力。
In this study, the use of p-GaN as a cap layer and ALD-Al2O3 as a gate dielectric in AlGaN/GaN MIS-HEMTs have been demonstrated, and the difference in device DC performances when varying cap thickness are presented.
Before device fabrication, Hall measurement and PL measurement were implemented to analyze two epitaxy structures in this study. The influence of p-GaN cap thickness on device performances was discussed through DC and pulse measurement.
Device with thicker p-GaN cap layer shows a lower gate leakage, and therefore could achieve a higher on/off current ratio of ~109. The gate leakage from varying p-GaN cap thickness was investigated to analyze the conduction mechanisms and correlation between gate leakage and surface state conditions. The breakdown characteristics indicate devices with different cap thickness have almost the same breakdown voltages at about 700 V. For pulse I/V characteristics, device with thicker p-GaN cap shows less current collapse phenomenon when biasing at low quiescent bias point.
The Al2O3/p-GaN interface has been analyzed through DC/pulsed measurement of the threshold voltage shift. In addition, Dit was extracted from C-V measurement, and gate-current transient from MIS capacitors was used to study the trapping mechanism near the interface. The measurement result indicates device with thicker p-GaN cap layer have not only better surface state conditions but also better property of Al2O3/p-GaN interface.
AlGaN/GaN MIS-HEMTs with p-GaN cap layer and Al2O3 gate dielectric have been fabricated and characterized. The measurement results show high potential for GaN based devices in power switching applications.
中文摘要 I
Abstract II
致謝 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵高電子遷移率電晶體之發展概況 3
1.3 研究動機與目的 7
1.4 論文架構 10
第二章 磊晶結構與元件製作 12
2.1 前言 12
2.2 氮化鋁鎵/氮化鎵於矽基板之磊晶結構 12
2.3 材料分析 16
2.4 元件之製作流程 22
2.5 結論 25
第三章 p型氮化鎵披覆層之金絕半高電子遷移率電晶體特性量測分析 26
3.1 前言 26
3.2 直流電流-電壓和崩潰特性 26
3.3 閘極漏電流之分析 39
3.4 脈衝電流-電壓特性 43
3-5 矽基板偏壓下動態量測及暫態分析 51
3.6 結論 54
第四章 p型氮化鎵披覆層之金絕半高電子遷移率電晶體之介電層/半導體介面探討 56
4.1 前言 56
4.2 臨界電壓飄移之量測 56
4-3 金絕半電容之電容-電壓量測與分析及介面缺陷密度萃取 60
4-4 金絕半電容之電流暫態量測 66
4.5 結論 71
第五章 結論與未來展望 72
參考文獻 74
附錄 I p型氮化鎵披覆層之金絕半高電子遷移率電晶體之高頻特性 80
[1] Lin Hong, “Market and Technology Trends in WBG Power Module Packaging,” Yole Development, 2015.
[2] Alex Lidow, “How to GaN: Intro to Gallium Nitride (GaN) Transistor Technology,” EEWeb’s Community, 2013.
[3] JJ.Aubert, “GaN/Si Power Electronics: From devices to modules,” CEA-Leti, 2013
[4] L. F. Eastman and U. K. Mishra, “The Toughest Transistor Yet” IEEE Spectrum., vol. 3, pp. 28–33, May. 2002.
[5] T. Kikkawa et al., “600 V JEDEC-Qualified Highly Reliable GaN HEMTs on Si Substrate,” IEEE Int. Electron Devices Meeting., pp. 2.6.1–2.6.4, Dec. 2014.
[6] S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “Large Gate Leakage Current in AlGaN/GaN High Electron Mobility Transistors,” Japanese Journal of Applied Physics., vol. 41, no. 8, pp. 5125–5126, Aug. 2002.
[7] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, M. Yamaguchi, “Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs with Optimized Field-Plate Structure,” IEEE Trans. Electron Devices., vol. 54, no. 8, pp. 1825–1830, Aug. 2007.
[8] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, “Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 659–661, Jul. 2010.
[9] Kevin J. Chen, S. Yang, Z. Tang, S. Huang, Y. Lu, Q. Jiang, S. Liu, C. Liu, and B. Li, “Surface nitridation for improved dielectric/III-nitride interfaces in GaN MIS-HEMTs,” Physica. Status Solidi., no. 5, pp. 1059–1065, Dec. 2014.
[10] M. F. Romero, A. Jiménez, J. Miguel-Sánchez, A. F. Braña, F. González-Posada, R.
Cuerdo, F. Calle, and E. Muñoz, “Effects of N2 Plasma Pretreatment on the SiN
Passivation of AlGaN GaN HEMT,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 209–211, Mar. 2008.
[11] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Trans. Electron Devices., vol. 53, no. 2, pp. 356–362, Feb. 2006.
[12] Ye Wang, Maojun Wang, Bing Xie, Cheng P. Wen, Jinyan Wang, Yilong Hao, Wengang Wu, Kevin J. Chen, Bo Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370–1372, Nov. 2013.
[13] Kevin J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, “Physics of fluorine plasma ion implantation for GaN normally off HEMT technology,” IEEE Int. Electron Devices Meeting., pp. 19.4.1–19.4.4, Dec. 2011.
[14] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices., vol. 54, no. 12, pp. 3393–3399, Dec. 2007.
[15] Liang-Yu Su, Finella Lee, and Jian Jang Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Trans. Electron Devices., vol. 61, no. 2, pp. 460–465, Feb. 2014.
[16] P. Kordos, J. Bernat, and M. Marso, “Impact of layer structure on performance of   unpassivated AlGaN/GaN HEMT,” Electronics Letters., vol. 36, issue. 3-6, pp. 438–441, Mar. 2005.
[17] T. Zine-eddine, H. Zahra, and M. Zitouni, “DC and RF characteristics of AlGaN/GaN   HEMT and MOS-HEMT,” International Conference on Electrical Engineering., pp. 1–4, Dec. 2015.
[18] C. Liu, E. F. Chor, and L.S. Tan, “Enhanced device performance of AlGaN/GaN  HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide,” Semiconductor Science and Technology., vol. 22, number. 5, pp. 522–527, Mar. 2007.
[19] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in  insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric,” Applied Physics Letters., vol. 83, number. 14, pp. 2952–2954, Oct. 2003.
[20] D. Deen, D. Storm, D. Meyer, D. S. Katzer, R. Bass, S Binari, and T Gougousi,  “AlN/GaN HEMTs with high-κ ALD HfO2 or Ta2O5 gate insulation,” Physica. Status Solidi., no. 7-8, pp. 2420–2423, May. 2011.
[21] C. Zhang, Y. Hao, and Q. Feng, “Effective surface passivation of AlGaN/GaN heterostructures by using PH3 plasma treatment and HfO2 dielectric,” Physica. Status Solidi., no. 3-4, pp. 934–937, Jan. 2012.
[22] A.Fontser, A.Perez-Tomas, P.Godignon, and J.Millan, “High Voltage Low Ron In-situ SiN/Al0.35GaN0.65/GaN-on-Si Power HEMTs Operation up to 300 oC,” Proceedings of the European Solid-State Device Research Conference., pp. 306–3.9, Sep. 2012.
[23] S. Yoshida, Y. Sakaida, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Current Collapse in AlGaN/GaN HEMTs with a GaN Cap Layer,” IEEE International Meeting for Future of Electron Devices., pp. 48–49, Jun. 2015.
[24] T. Chang, T. Hsiao, C. Huang, W. Kuo, S. Lin, G. S. Samudra, and Y. C. Liang, “Phenomenon of Drain Current Instability on p-GaN Gate AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices., vol 62, issue 2, pp. 339–345, Sep. 2014.
[25] S. ARULKUMARAN, T. EGAWA, and H. ISHIKAWA, “Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors,” Japanese Journal of Applied Physics, vol. 44, no. 5A, pp. 2953–2960, May. 2005.
[26] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, M. Yamaguchi, “A 120-W Boost Converter Operation Using a High-Voltage GaN-HEMT,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 8–10, Jan. 2008.
[27] K. Y. R. Wong et al., “A next generation CMOS-compatible GaN-onSi transistors for high efficiency energy systems,” IEEE Int. Electron Devices Meeting., pp. 9.5.1–9.5.4, Dec. 2015.
[28] L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen, and F. Udrea, “On the     physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices,” Applied Physics Letters., vol 110, issue 12, pp. 123502-1–123502-5, Mar. 2017.
[29] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, “Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress,” IEEE Electron Device Lett., vol. 37, no. 4, pp. 385–388, Apr. 2016.
[30] 李智皓, “氮化鋁鎵/氮化鎵場效電晶體之磊晶表面層研究,” 中央大學, 2016.
[31] B. A. Hull, S. E. Mohney, H. S. Venugopalan, and J. C. Ramer, “Influence of oxygen on the activation of p-type GaN,” Applied Physics Letters., vol. 76, number. 16, pp. 2271–2273, Apr. 2000.
[32] T. Wen, S. Lee, W. Lee, T Chen, S Chan and J. Tsang, “Activation of p-Type GaN in a Pure Oxygen Ambient,” Japanese Journal of Applied Physics, vol. 40, no. 5B, pp. 495–497, Feb. 2001.
[33] Tongde Huang, Xueliang Zhu, Ka Ming Wong, and Kei May Lau, “Low-Leakage-Current AlN/GaN MOSHFETs Using Al2O3 for Increased 2DEG,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 212–214, Feb. 2012.
[34] Joseph J. Freedsman et al., “Normally-OFF Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with Low Leakage Current and High Breakdown Voltage (825 V),” Applied Physics Express., vol. 7, no. 4, pp. 041003-1–041003-3, Apr. 2014.
[35] Zhaoyang Liu et al., “Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs,” J. Vac. Sci. Technol. B, vol. 34, no. 4, pp. 041202-1–41202-6, Mar. 2016.
[36] Zenji Yatabe et al., “Characterization of electronic states at insulator/(Al)GaN interfaces for improved insulated gate and surface passivation structures of GaN-based transistors,” Japanese Journal of Applied Physics., vol. 53, no. 10, pp. 100213-1–100213-10, Sep. 2014.
[37] Zhili Zhang et al., “Studies on High-Voltage GaN-on-Si MIS-HEMTs Using LPCVD Si3N4 as Gate Dielectric and Passivation Layer,” IEEE Trans. Electron Devices., vol. 63, no. 2, pp. 731–738, Feb. 2016.
[38] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics., vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[39] D. Balaz, “Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors,” University of Glasgow, 2010.
[40] 湯順偉, “氮化鎵緩衝層磊晶跟場效電晶體直流和動態特性關聯之研究,” 中央大學, 2016.
[41] E. F. Schubert, “Light Emitting diode, ” Cambridge Uni Press, 2006.
[42] T. Goudon, V. Miljanovi, and C. Schmeiser, “On The Shockley-Read-Hall Model : Generation-Recombination in Semiconductors,” SIAM J. Appl. Math., vol. 67, no. 4, pp.1183–1201, May. 2007.
[43] X. Zhou, Z. Feng, Y. Wang, G. Gu, X. Song, and S. Cai, “Transient Simulation Of AlGaN/GaN HEMT Including Trapping and Thermal Effects,” IEEE International Conference on Solid-State and Integrated Circuit Technology., pp. 1–3, Oct. 2014.
[44] J. H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel, “Properties, Processing and Applications of Gallium Nitride and Related Semiconductors,” INSPEC, 1998.
[45] D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow Luminescence of Gallium Nitride Generated by Carbon Defect Complexes,” Phys. Rev. Lett., vol. 110, no. 8, pp. 087404-1–087404-5, Feb. 2013.
[46] D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Hydrogen-carbon complexes and the blue luminescence band in GaN,” Journal of Applied Physics., vol. 119, no. 3, pp. 035702-1–035702-10, Jan. 2016.
[47] Z. Vashaei, E. Cicek, C. Bayram, R. McClintock, and M. Razeghi, “GaN avalanche photodiodes grown on m-plane freestanding GaN substrate,” Applied Physics Letters., vol. 96, no. 20, 201908-1–201908-3, May. 2010.
[48] L. Wang, F. M. Mohammed, I. Adesida, “Differences in the reaction kinetics and contact formation mechanisms of annealed Ti/Al/Mo/Au Ohmic contacts on n-GaN and AlGaN/GaN epilayers,” Journal of Applied Physics., vol. 101, no. 1, 013702-1–013702-11, Jan. 2007.
[49] J. Kotani ea al., “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Applied Physics Letters., vol. 91, no. 9, pp. 093501-1–093501-3, Aug. 2007.
[50] W. Saito et al., “Breakdown behaviour of high-voltage GaN-HEMTs,” Microelectronics   Reliability., vol. 55, issues 9-10, pp. 1682–1686, Jul. 2015.
[51] D. Bisi, M. Meneghini, C. Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, E. Zanoni, “Deep-Level Characterization in GaN HEMTs-Part I Advantages and limitations of Drain Current Transient Measurements,” IEEE Trans. Electron Devices., vol. 60, no. 10, pp. 3166–3175, Oct. 2013.
[52] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 161–163, Apr. 2004.
[53] Z. Tang, S. Huang, X. Tang, B. Li, and K. J. Chen, “Influence of AlN Passivation on Dynamic ON-Resistance and Electric Field Distribution in High-Voltage AlGaN/GaN-on-Si HEMTs,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2785–2792, Aug. 2014.
[54] S.Agnihotri, S. Ghosh, A. Dasgupta, S. A. Ahsan, S K.handelwal, and Y. S. Chauhan, “Modeling of Trapping Effects in GaN HEMTs,” IEEE India Conference, pp. 1–4, Dec. 2015.
[55] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, P. Moens, “Temperature-Dependent Dynamic RON in GaN-based MISHEMTs : Role of Surface Traps and Buffer Leakage,” IEEE Trans. Electron Devices., vol. 62, no. 3, pp. 782–787, Mar. 2015.
[56] Matteo Meneghini et al., “Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2199–2207, May. 2014.
[57] Hyeongnam Kim and Wu Lu, “Analysis of trapping effects in AlGaN/GaN HEMTs based on near zero bias output conductance,” Physica. Status Solidi., no. 7–8, pp. 2004–2006, Apr. 2010.
[58] Po-Chien Chou et al., “Evaluation and Reliability Assessment of GaN-on-Si MIS-HEMT for Power Switching Applications,” Energies., vol. 10, no. 233, pp. 1–12, Feb. 2017.
[59] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance-Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface,” Japanese Journal of Applied Physics., vol. 50, no. 2R, pp. 021001-1–021001-7, Feb. 2011.
[60] S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. J. Chen, “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 193–195, Feb. 2013.
[61] D. Bisi et al., “On trapping mechanisms at oxide-traps in Al2O3/GaN metal-oxide-semiconductor capacitors,” Applied Physics Letters., vol. 108, no. 11, pp. 112104-1–112104-5, Mar. 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top