|
[1] A. S. Y Poon and M. Taghivand, “Supporting and enabling circuits for antenna arrays in wireless communications,” Proc. IEEE, vol. 100, no. 7, pp. 2207-2218, Jul. 2012 [2] H. Krishnaswamy and L. Zhang, “Analog and RF interference mitigation for integrated MIMO Receiver arrays,” Proc. IEEE, vol. 104, no. 3, pp. 561-575, Mar. 2016. [3] A. Valdes-Garcia, S. T. Nicolson, J.-W. Lai, A. Natarajan, P.-Y. Chen, S.K. Reynolds, J.-H.C. Zhan, D.G. Kam, D. Liu, and B. Floyd, “A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010. [4] E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, and D. Ritter, “A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1359-1375, Mar. 2013. [5] F. Golcuk, T. Kanar, and G. M. Rebeiz, “A 90 - 100-GHz 4 x 4 SiGe BiCMOS polarimetric transmit/receive phased array with simultaneous receive-beams capabilities,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3099-3114, Aug. 2013. [6] A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds, and B. D. Parker, “W-band dual-polarization phased-array transceiver front-end in SiGe BiCMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1989-2002, Jun. 2015. [7] S. Sim, L. Jeon, and J.-G. Kim, “A compact X-band bi-directional phased-array T/R chipset in 0.13 m CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 562–569, Jan. 2013. [8] D. Shin, C.-Y. Kim, D.-W. Kang, and G. M. Rebeiz, “A high-power packaged four-element X-band phased-array transmitter in 0.13-μm CMOS for radar and communication systems,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3060–3071, Aug. 2013. [9] C. Liu, Q. Li, Y. Li, X.-D. Deng, X. Li, H. Liu, and Y.-Z. Xiong, “A fully integrated X-band phased-array transceiver in 0.13-μm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 575-584, Feb. 2016. [10] L. Y. Chen, P. J. Peng, C. Kao, Y. L. Chen and J. Lee, “CW/FMCW/pulse radar engines for 24/26GHz multi-standard applications in 65nm CMOS,” IEEE Asian Solid-State Circuits Conf. Dig., Xiamen, 2015. [11] M. Elkhouly, Y. Mao, C. Meliani, J. C. Scheytt, and F. Ellinger, “A G -band four-element Butler matrix in 0.13 µm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 1916-1926, Sep. 2014. [12] C.-C. Kuo, H.-C. Lu, P.-A. Lin, C.-F. Tai, Y.-M. Hsin, and H. Wang, “A fully SiP integrated V-band Butler matrix end-fire beam-switching transmitter using flip-chip assembled CMOS chips on LTCC,” IEEE Trans. Microw. Theory Techn., vol.60, no. 5, pp. 1424-1436, May 2012. [13] C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, and J. Papapolymerou, “A 60-GHz active receiving switched-beam antenna array with integrated Butler matrix and GaAs amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3599–3607, Nov. 2012. [14] W. Choi, K. Park, Y. Kim, K. Kim, and Y. Kwon, “A V-Band switched beam-forming antenna module using absorptive switch integrated with 4 × 4 Butler Matrix in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4052-4059, Dec. 2010. [15] H. Krishnaswamy and H. Hashemi, “A 4-channel 4-beam 24-to-26 GHz spatiotemporal RAKE radar transceiver in 90 nm CMOS for vehicular radar applications,” IEEE Int. Solid-State Circuits Conf. Techn. Dig., pp. 214–215, Feb. 2010. [16] E. M. Chase and W. Kennan, “A power distributed amplifier using constant-R networks,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 811–815, Jun. 1986. [17] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 764-770, Apr. 2010. [18] N. Militaru, G. Lojewski, N. D. Codreanu and C. Ionescu, “Compact microwave bandpass filter using multilayer resonator-embedded packaging,” 2007 30th International Spring Seminar on Electronics Technology (ISSE), Cluj-Napoca, pp. 88-93, 2007. [19] M. M. Elsbury, P. D. Dresselhaus, N. F. Bergren, C. J. Burroughs, S. P. Benz and Z. Popovic, “Broadband lumped-element integrated n-way power dividers for voltage standards,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 2055-2063, Aug. 2009. [20] C. H. Wu and C. H. Tseng, “A compact branch-line coupler using π-equivalent shunt-stub-based artificial transmission lines,” Proc. Asia-Pacific Microw. Conf., pp. 802-805, Apr. 2010. [21] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002. [22] H.-S. Wu, H.-J. Yang, C. J. Peng and C. K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Techn, vol. 53, no. 9, pp. 2713-2720, Sep. 2005. [23] L. C. Hsu, Y. L. Wu, J. Y. Zou, H. N. Chu and T. G. Ma, “Periodic synthesized transmission lines with 2-D routing capability and its applications to power divider and couplers using integrated passive device process,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 493-501, Feb. 2016. [24] J. Y. Zou, C. H. Wu and T. G. Ma, “Heterogeneous integrated beam-switching/ retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128-3139, Aug. 2013. [25] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C.H. Chen, “Design of an LTCC triband transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 12, pp. 2718–2723, Dec. 2004. [26] T.-N. Kuo, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 90–92, Feb. 2006. [27] Y.-S. Lin and J.-H. Lee, “Miniature ultra-wideband power divider using bridged T-coils,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 391–393, Aug. 2012. [28] Y. S. Lin and J. H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594-2602, Jul. 2013. [29] T.-S. Horng, J.-M. Wu, L.-Q. Yang, and S.-T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1015–1018, Jun. 2003. [30] J. Butler, “Multiple beam antenna,” Sanders Associates Nashua, N.H. Int. Memo. RF-3849 Jan. 8, 1960. [31] T.-Y. Chin, J.-C. Wu, S.-F. Chang, and C.-C. Chang, “A V-band 8 × 8 CMOS Butler matrix MMIC,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3538–3546, Dec. 2010. [32] C.-C. Chang, C.-C. Lin, and W.-K. Cheng, “Fully integrated 60 GHz switched-beam phased antenna array in glass-IPD technology,” Electron. Lett., vol. 51, no. 11, pp. 804-806, May 2015. [33] W.-Y. Chen, M.-H. Huang, P.-Y. Lyu, S.-F. Chang, and C.-C. Chang, “A 60-GHz CMOS 16-beam beamformer for two-dimensional array antennas,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2014. [34] D. Titz, F. Ferrero, R. Pilard, C. Laporte, S. Jan, H. Ezzeddine, F. Gianesello, D. Gloria, G. Jacquemod, and C. Luxey, “New wideband miniature branchline coupler on IPD technology for beamforming applications,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 5, pp. 911-921, May 2014. [35] J. Park, T. Chi, and H. Wang, “An ultra-broadband compact mm-wave butler matrix in CMOS for array-based MIMO systems,” Proc. IEEE Custom Integr. Circuit Conf. Dig., Sep. 2013. [36] C.-C. Chang, T.-Y. Chin, J.-C. Wu, and S.-F. Chang, “Novel design of a 2.5-GHz fully integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1757–1763, Aug. 2008. [37] B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, “An 8 × 8 Butler matrix in 0.13-μm CMOS for 5–6-GHz multibeam applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 295–301, Feb. 2011. [38] I. Haroun, T.-Y. Lin, D.-C. Chang, and C. Plett, “A compact 24–26 GHz IPD-based 4 × 4 Butler matrix for beam forming antenna systems,” Proc. Asia–Pacific Microw. Conf., Kaohsiung, Taiwan, pp. 166–168, Dec. 2012. [39] D. Calzona, L. Boccia, A. Shamsafar and G. Amendola, “A BiCMOS 4×4 Butler matrix,” Proc. 9th Eur. Conf. on Antennas and Propagation (EuCAP), 2015. [40] T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273-2282, Nov. 2010. [41] B. Cetinoneri, Y. A. Atesal, J. Kim, and G. M. Rebeiz, “CMOS 4×4 and 8×8 Butler matrices,” IEEE MTT-S Int. Microw. Symp. Dig., 2010. [42] T.-H. Tseng and Y.-S. Lin, “Miniature 2.4-GHz switched beamformer module using the integrated passive device technology,” Proc. 8th Eur. Conf. on Antennas and Propagation (EuCAP), pp. 2219-2222, Apr. 2014. [43] B. Khabbaz, S. Morais, and S. Powell, “A GaAs DC-20 GHz SPDT absorptive switch,” Proc. 8th University/Government/Industry Microelectronics Symp., pp. 165-167, 1989. [44] G.-L. Tan and G. M. Rebeiz, “DC-26 GHz MEMS series-shunt absorptive switches,” IEEE MTT-S Int. Microw. Symp. Dig., vol.1, pp. 325-328, 2001. [45] W. M. L. Kuo, J. P. Comeau, J. M. Andrews, J. D. Cressler, and M. A. Mitchell, “Comparison of shunt and series/shunt nMOS single-pole double-throw switches for X-band phased array T/R modules,” IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, pp. 249-252, 2007. [46] T. Buber, F. Kolak, N. Kinayman, and J. Bennett, “A low-loss high-isolation absorptive GaAs SPDT PIN switch for 24 GHz automotive applications,” Proc. IEEE Radio and Wireless Conf., (RAWCON), pp. 349-352, 2003. [47] J. G. Yang and K. Yang, “High-linearity K-band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013. [48] S. Lee, J. Kim, Y. Kim, and Y. Kwon, “An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network,” J. Micromech. Microeng., vol. 19, no. 1, 01524, Jan. 2009. [49] W. Choi, K. Park, Y. Kim, K. Kim, and Y. Kwon, “A V-Band switched beam-forming antenna module using absorptive switch integrated with 4×4 Butler Matrix in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4052-4059, Dec. 2010. [50] S. Kaleem, J. Kühn, R. Quay, and M. A. Hein, “Microwave monolithic integrated gallium-nitride switches for low static power reconfigurable switch matrix with passive transparent state for power failure redundancy,” IEEE MTT-S Int. Microw. Symp. Dig., 2015. [51] T. M. Hancock, I. Gresham, and G. M. Rebeiz, “A differential sub-nanosecond high-isolation absorptive active SiGe 24 GHz switch for UWB applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Dig., pp. 497-500, 2004. [52] T. M. Hancock and G. M. Rebeiz, “Design and analysis of a 70 ps differential SiGe RF switch,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 7, pp. 2403–2410, Jul. 2005. [53] M. Thian and V. F. Fusco, “Ultrafast low-loss 42–70 GHz differential SPDT switch in 0.35 μm SiGe technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 655–659, Mar. 2012. [54] M. Thian, N. B. Buchanan, and V. F. Fusco, “Ultrafast low-loss 40–70 GHz SPST switch,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 682-684, Dec. 2011. [55] I.-H. Lin, M. DeVincentis, C Caloz, and T. Itoh, “Arbitrarily dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 4, pp. 1142–1149, Apr. 2004. [56] K.-K. M. Cheng and F.-L. Wong, “A novel approach to the design and implementation of dual-band compact planar 90o branch-line coupler,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 11, pp. 2458–2463, Nov. 2004. [57] K.-K. M. Cheng and S. Yeung, “A novel dual-band 3-dB branch-line coupler design with controllable bandwidths,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3055–3061, Oct. 2012. [58] C.-L. Hsu, J.-T. Kuo and C.-W. Chang, “Miniaturized dual-band hybrid couplers with arbitrary power division ratios,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 1, pp. 149–156, Jan. 2009. [59] P.-L. Chi and K.-L. Ho, “Design of dual-band coupler with arbitrary power division rations and phase differences,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 2965–2974, Dec. 2014. [60] H. Zhang and K. J. Chen, “A stub tapped branch-line coupler for dualband operations,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 106–108, Feb. 2007. [61] M.-J. Park, “Dual-band, unequal length branch-line coupler with center-tapped stubs,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 617–619, 2009. [62] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1213–1221, May 2010. [63] C. Collado, A. Grau, and F. De Flaviis, “Dual-band planar quadrature hybrid with enhanced bandwidth response,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 180-188, Jan. 2006. [64] H. Kim, B. Lee and M. J. Park, “Dual-band branch-line coupler with port extensions,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 3, pp. 651-655, Mar. 2010. [65] M.-J. Park and B. Lee, “Dual-band, cross coupled branch line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 655-657, Oct. 2005. [66] L. K. Yeung, “A compact dual-band 90o coupler with coupled-line sections,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 9, pp. 2227–2232, Sep. 2011. [67] C.-H. Yu and Y.-H. Pang, “Dual-band unequal-power quadrature branch-line coupler with coupled lines,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 10–12, Jan. 2013. [68] S. Y. Zheng, S. H. Yeung, W. S. Chan, K. F. Man, S. H. Leung, and Q. Xue, “Dual-band rectangular patch hybrid coupler,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 7, pp. 1721–1728, Jul. 2008. [69] S.-Y. Zheng, Y. Wu, Y. Li, Y. Liu, and Y. Long, “Dual-band hybrid coupler with arbitrary power division rations over the two bands,” IEEE Trans. Compon. Packag., Manuf. Technol., vol. 4, no. 8, pp. 1347–1358, Aug. 2014. [70] H.-C. Lu, Y.-L. Kuo, P.-S. Huang, and Y.-L. Chang, “Dual-band CRLH branch-line coupler in LTCC by lumped elements with parasitic control,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 393-396, May 2010. [71] A. Bekasiewicz and S. Koziel, “Miniaturised dual-band branch-line coupler,” Electron. Lett., vol. 51, no. 10, pp. 769–771, May, 2015. [72] C. Gai, Y.-C. Jiao, and Y.-L. Zhao, “Compact dual-band branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 5, pp. 325-327, May 2016. [73] C.-F. Chen, S.-F. Chang, and B.-H. Tseng, “Compact microstrip dual-band quadrature coupler based on coupled-resonator technique,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 487-489, Jul. 2016. [74] C. Collado, A. Grau and F. De Flaviis, “Dual-band Butler matrix for WLAN systems,” IEEE MTT-S Int. Microw. Symp. Dig., 2005. [75] K. Wincza, K. Staszek, I. Slomian and S. Gruszczynski, “Scalable multibeam antenna arrays fed by dual-band modified Butler matrices,” IEEE Trans. Antennas Propaga, vol. 64, no. 4, pp. 1287-1297, Apr. 2016. [76] C. Zhou, J. Fu, H. Sun and Q. Wu, “A novel compact dual-band butler matrix design,” Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, pp. 1327-1330, 2014. [77] H. Ren, et al., “A compact phased array antenna system based on dual-band Butler matrices,” 2013 IEEE Radio and Wireless Symposium, pp. 214-216, 2013. [78] N. M. Jizat, S. K. A. Rahim and T. A. Rahman, “Dual band beamforming network integrated with array antenna,” 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, pp. 561-566, 2010. [79] L. Zhu, S. Sun, W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796–798, Nov. 2005. [80] R. Li, L. Zhu, “Compact UWB bandpass filter using stub-loaded multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 40–42, Jan. 2007. [81] B. Y. Yao, Y. G. Zhou, Q. S. Cao, Y. C. Chen, “Compact UWB bandpass filter with improved upper-stopband performance,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 27–29, Jan. 2009. [82] V. Sekar, K. Entesari, “Miniaturized UWB bandpass filters with notch using slow-wave CPW multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 80–82, Feb. 2011. [83] Z. C. Hao, J. S. Hong, “UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 941–948, April 2010. [84] Z. Z. Wu, Y. Shim, M. Rais-Zadeh, “Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 518–527, March 2012. [85] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon. Hybrids, Manut Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992. [86] W. T. Fang, C. H. Chen, Y. S. Lin, “2.4-GHz absorptive MMIC switch for switched beamformer application,” to appear in IEEE Trans. Microw. Theory Techn., 2017.
|